
TRANSMISSION OF TP DATAGRAMS OVER NET/ROM NETUORKS

Daniel M. Frank, W9NK
1802 Keyes Avenue

Madison, WI 53711-2006

ABSTRACT

One of the main design ,goals of the Internet
Protocol was that IP datagrams could be carried
over existing local- and wide-area networks. This
characteristic of IP makes it possible to build so
called V.nternetworkstt out of existing network
facilities. We built support for an existing
Amateur wide area network, NET/ROM, into the KA9Q
TCP/IP package, allowing thle use of NET/ROM to
carry IP datagrams, and adding features which make
the KA9Q software useful as a full duplex NET/ROM
packet switch. We have also shown that NET/ROM
may be used as a datagram network only,
independent of its transport and application layer
facilities.

INTRODUCTION

In the late Seventies and early Eighties, the
world of computer communications consisted of many
isolated local- and wide-area networks. Enough
communications capacity existed to link the entire
country, and much of the world, into a single
large network, but the existing facilities were
physically and logically dissimilar. They could
not simply be "plugged together" to make this
large '*internetworktt (or Ynternettt).

The designers of the Internet Protocol (the
"IP*' in ttTCP/IPtf) were committed to overcoming the
obstacles that prevented an Internet from
developing. They came up with two key ideas:

o Gateways can be established between networks.
A gateway is a computer which possesses the
physical resources and software to connect with
and speak to more than one kind of network.

oA single protocol can be developed whose
messages ("datagramstt) can pass through any
network, hidden inside that network's %ativet*
messages. When a message with a datagram inside
it encounters a gateway, the gateway %nwrapstl the
datagram, rewraps it in the native message of a
second network, and sends it on its way. If a
datagram is too large to fit inside the native
message type of a network, the gateway breaks it
into pieces (I*fragmentstt), each of which is then
wrapped in a native message and sent on.

By using IP and gateways, the designers of
the Internet have created a global "network of
networkstt, which today encompasses hundreds of
thousands of computer systems, connected to every
conceivable kind of network.

Amateur packet radio networking, like
computer networking, consists of many different

network technologies and protocols. Local AX.25
communications, digipeating, TexNet, ROSE, and
NET/ROM, to name only a few, coexist or compete
for dominance as the network technology of choice,
This competition is healthy, and is in the spirit
of amateur radio experimentation. Any attempt to
establish one network over another as the single
%tandard" is both pointless and doomed to
failure. No single standard can ever be imposed
on radio amateurs any more than it could have been
imposed on computer networks, given the
investments already made in equipment, software,
and education.

As the dissimilar amateur networks grow in
size, they meet up with each other. Sometimes
they coexist on the same ch(annels. But without
gateways and some kind of Internet Protocol, each
network is an island of communication, unable to
send or receive data beyond its own shores.

The work described in this paper is a first
step towards true Amateur Radio internetworking.
Using the KA9Q TCP/IP package as a basis, we have
built a software system which functions as a
gateway between local TCP/IP networks and the
NET/ROM network. It allows IP datagrams to be
forwarded automatically and transparently across
existing NET/ROM facilities. In addition, as a
full implementation of NET,/ROM layer 3, it is
capable of functioning as a NET/ROM relay node (as
opposed to an AX.25 endpoint), and as a full
duplex NET/ROM packet switch.

IP OPERATIONS OVER STANDARD AX.25 CONNECTIONS

In order to properly understand how we have
interfaced to the NET/ROM network, we should first
examine how "Ordinarytt TCP/IP operations take
place over AX.25. This description follows the
IS0 OS1 Reference Model (RM), a seven-layer
classification of network facilities.

From the bottom up, the layers used in packet
TCP/IP operation are:

(1) A physical layer, made up of the radios,
antennas, and modems used to generate and carry
the tones used to convey digital data from one
place to another.

(2) A data link layer, made UP of HDLC and
AX.25, used to format and address the data, detect
errors and discard bad packets. The link layer
only knows about and communicates with stations
with which we are directly connected. In the case
of packet radio, this means stations with which we
have reliable, direct communications.
(Digipeating doesn't count, for purposes of this

65

discussion.)

(3) A network layer, responsible for routing
packets to their destinations through one or more
link-to-link hops. The main distinction between
the data link and network layers is that the
network layer provides facilities for
communication between stations not directly
connected. The network layer has to have some
concept of routing, that is, the path to be taken
by a packet to reach its destination. We use IP
as our network protocol.

(4) A transport layer, responsible for reliable
end-to-end communications. Our network layer does
not guarantee that a packet will actually reach
its destination. While AX.25 provides link layer
acknowledgement and retransmission, it does not
guard against nodes which go down, software
errors, or a destination station which is not on
the air. The transport layer provides for an
acknowledgment to be sent from the packet's
ultimate destination, and for retries in case that
acknowledgment doesn't arrive within a reasonable
amount of time.

The other function of a transport layer is
multiplexing. The network layer provides only
host-to-host addressing. However, a computer can

1 have many users, and provide many different
services. The transport layer takes incoming
packets from the network and directs them to the
proper programs based on information contained in
the transport header portion of the packets.

Our transport protocol is TCP, the
Transmission Control Protocol.

(5) The session layer is mainly involved with
providing services to individual programs within
the computer. It is not of importance for the
current discussion.

(6) The presentation layer is mainly concerned
with the uniform formatting of data, or its
conversion between different character sets. Some
of the TCP/IP user programs have a very simple
presentation "layer" which maps plain text
messages in the native character set of the user%
computer, to and from ASCII with a standard line-
ending convention.

(7) The application layer is made up of the
various programs and services that use networking
facilities. Users of TCP/IP mainly make use of
telnet, for keyboard to keyboard chat and remote
login, smtp for automated transfer of mail, and
ftp, for easy exchange of files.

LINKLAYERMULTIPLEXING

As can be seen from our description, local
TCP/IP operation uses regular AX.25 communications
for its link layer. An AX.25 packet containing an
IP datagram contains a special code in the
protocol ID (PID) field of its header. This
allows the link layer software to forward the
contents of the packet to the proper part of the
KA9Q package, in this case the IP routing code.

If the AX.25 packet contained a PID of "no
level 3*', the link layer would forward it to a
different part of the package, in this case the
AX.25 session code, which allows users of the
package to hold *'regularl' AX.25 conversations,
bypassing all layers between the link and
application layers. (This brings up an important
point about the reference model we've presented:
an implementation may not contain certain layers
from the RM if the services they would have
provided are unused or unneeded.)

This switching of packets at the link layer
based on their PIDs is known as link layer
multiplexing. Multiplexing at the link layer is
extremely useful, because it allows different
network layer protocols to share the same data
link services, and often the same link
connections. Link layer multiplexing is what
allows the KA9Q software with NET/ROM support to
act as a digipeater, an IP relay, and a NET/ROM
relay node, all on the same channel, through the
same TNC.

AN OVERVIEW OF NET/ROM

Now that we understand how IP datagrams are
carried over packet radio links, we should examine
how NET/ROM operates. Again, we will use the IS0
OS1 Reference Model as our framework:

(1) The physical layer
radios , antennas, and modems.

is the same, i.e.

(2) The data link layer is again AX.25, but the
Protocol ID field of NET/ROM packets is set to a
special NET/ROM ID.

(3) The netvork layer of NET/ROM handles the
automatic routing of packets to their destination.
A NET/ROM network packet header contains the
source and destination callsigns of the NET/ROM
endpoints. There is no information about the
route the packet will travel to its destination.
Instead, every node maintains a routing table
based on routing adjacencies: it receives
broadcasts from other nodes which say,
essentially, "1 am willing to take traffic for
such-and-such a node." When a NET/ROM node
receives a network packet, it examines its routing
table to see if anyone is willing to pass it on
toward its destination. If so, it hands off the
packet to the next station. If not, it simply
throws the packet away without comment.

The type of network communications service
(as opposed to the routing techniques) used in
NET/ROM (and IP) is usually called an unreliable,
connectionless datagram layer, and the network
layer packets are generally called datagrams. The
service is unreliable, because it does not
guarantee or confirm ultimate delivery. It is
connectionless, because no circuit is established
over which datagrams will travel. (This contrasts
with some public data network protocols, where
before data may be sent to a remote system, a
fixed path to that system must be set up through
the network, with resources preallocated at every
intervening node. Each approach has its
advantages and adherents.)

(4) The transport layer of NET/ROM uses what is
called a sequenced packet protocol. Unlike TCP,
which delivers an unsegmented stream of bytes to
the receiver, and is free to pack as many or as
few bytes into each message as it likes, the
NET/ROM transport delivers a sequence of packets.
The amount of data in these packets is determined
by the amount of data in the AX.25 packets the
NET/ROM user presents for transmission. NET/ROM
is not free to combine packets together for
greater efficiency, although it can fragment and
reassemble packets' which are too large to fit in
one of its transport messages.

The NET/ROM transport protocol provides end-
to-end delivery and acknowledgement, as well as
demultiplexing of arriving messages by circuit
number. A NET/ROM node can be handling traffic
for more than one circuit, or connection, at a
time, and it directs that traffic internally by
examining the circuit number field of the
transport header.

(5) T
NET/ROM.

he session layer is not present in

(6) The
NET/ROM.

presentation layer is not present in

(7) The application layer is what a user sees
when he or she connects to a NET/ROM node. It is
responsible for responding to user commands to
list routes and nodes, and establish connections.
"No layer 3 *I AX.25 packets arriving at a NET/ROM
node are shunted directly up to the application
layer, while "NET/ROM" PID packets are forwarded
up to the NET/ROM network layer. This link layer
multiplexing should be familiar from our earlier
discussion.

A full explanation of how the NET/ROM
software works is beyond the scope of this paper.
The reader is referred to the NET/ROM manual for
further details.

NETWORK AND INTEXNETWORK

Our presentation of the IS0 OS1 RM has been
somewhat simplified. In particular, the IS0
recognizes a subdivision of Layer 3 into a Network
Layer (3A) and an Internetwork Layer (3B).
Strictly speaking, the Internet Protocol (IP) is a
3B protocol, while the NET/ROM network service is
a 3A protocol. To put it somewhat crudely, IP is
an Internetwork Layer because its messages can be
routed through multiple logically and physically
distinct networks. The same cannot be said of
X.25, for example, or of NET/ROM layer 3. Our
NET/ROM support in the KA9Q package reflects this
distinction.

The KA9Q NET/ROM software is not a full
NET/ROM implementation. That was unnecessary for
our purposes. We didn't need the NET/ROM
transport protocol, since our reliable end-to-end
services are already provided by TCP. We didn't
need the application layer, for similar reasons.
What we did need was an existing network service
that could carry our IP datagram traffic to remote
destinations simply and easily. The NET/ROM
network layer was sufficient for this purpose.

We use the NET/ROM nodes as a datagram
network. When we have traffic to pass through a
local NET/ROM, our software makes sure we have an
AX.25 connection to that node, then puts a NET/ROM
layer 3 header on our IP datagram and sends it off
to the NET/ROM via an AX.25 packet with a protocol
ID of NET/ROM. The NET/ROM link layer sees the
protocol ID and passes the packet to its network
layer, which examines its routing table and passes
the packet on to the appropriate neighboring
NET/ROM. This process continues until the packet
arrives at the destination computer running the
KA9Q software, where it is unwrapped and passed
back up to the IP code.

At no point is the NET/ROM user interface or
transport layer involved. We do not have to issue
CONNECT commands, or make use of NET/ROM virtual
circuits in any way. The NET/ROM nodes accept and
pass our datagrams because they do not examine the
contents of network datagrams not specifically
addressed to them. We arie able to take advantage
of the link-layer acknowledgements and automatic
routing of the NET/ROM system without the overhead
of its higher level services.

SOF~~ ARCHITECTIJRE

Let's examine how this is done in more
detail. Our once-simple protocol stack has grown
a bit by now. Let's have a look at it:

.I -i. _
(1) The physical layer is basically unchanged

(although we did added another physical layer
service, described later).

(2) At the data link layer, we still have
AX.25. However, the link layer now multiplexes
three different kinds of packets, "No level 3”
packets still go up the AX.25 session code, and IP
packets will go directly up to layer 3B, but now
we also direct packets with a NET/ROM PID to the
NET/ROM 3A routing layer.

(3A) Incoming packets with a NE:T/ROM PID go to
the network layer. This is a full implementation
of NET/ROM layer 3. It has its own routing table,
similar to that found in any NET/ROM node. It
sends NODES broadcasts, which update the routing
tables of neighboring NET/ROM nodes, and updates
its own routing table on receipt of NODES
broadcasts from those neighbors.

The NET/ROM layer examines incoming NET/ROM
datagrams to see if our station is their
destination. If the datagrams are not for us, the
routing table is examined to see if we can forward
them on to a neighboring node for handling. If we
can, they are sent back down to the link layer to
continue their journey. In other words, a station
running the KA9Q package with NET/ROM support can
act as a NET/ROM relay station. As far as
neighboring NET/ROM nodes are concerned, they are
simply passing traffic on through another NET/ROM.

If a NET/ROM datagram is for us, the network
layer makes sure that it isn't a NET/ROM transport
packet. If it is, it is dropped. If it isn't, it
is sent up to layer 3B.

(3B) The intemetwork .layer contains the IP
router and protocol code. (Remember that IP has

its own routing table and algorithms!). It
receives AX.25 traffic with a protocol ID of IP,
as well as IP datagrams arriving in NET/ROM
network datagrams.

SO
The remaining layers are the

we won't repeat them.

IPRcmTINGvIANET/Rop(

same as before,

The IP routing table is similar, although not
identical, to the one used for NET/ROM. It
contains two kinds of entries, which we will call
local routes and gateway routes.

A local route consists of an IP address and
an interface name. The KA9Q software supports
multiple interfaces, similar to the way that
NET/ROM supports both a TNC's modem and its serial
port. One component of a route, both in NET/ROM
and the KA9Q package, is the interface through
which an outgoing datagram should pass. (The main
difference is that, while NET/ROM only supports
AX.25 and two interfaces, the KA9Q code supports
many different link layers and an almost unlimited
number of interfaces.) When a local route is
found in the IP routing table, this means that the
station with the given IP address is on the local
subnet, which for packet radio purposes means that
it is within radio communications range. The
datagram is forwarded to the link layer with an
indication that direct delivery should be
attempted.

A gatevay route consists of an IP address, an
interface name, and a gateway IP address. When we
encounter a gateway route, it means that the
station in question is not on our local subnet
(i.e. not within radio range), and must be reached
via a relay station, or gateway. (You will recall
the idea of gateways from our earlier introduction
of internetworking.) The IP datagram is forwarded
to the link layer with an indication that the
message should be sent, not directly to its
destination, but to the gateway station, which
will make an attempt to reach the recipient,
perhaps via another gateway.

When we added the NET/ROM support, we were
concerned that it be fully transparent to the IP
layer, both out of concern over proper design, and
out of a desire to avoid any unnecessary rewrite
of the. existing code. One key assumption in the
KA9Q IP routing software is that of routing
adjacency: the IP layer makes the assumption that
it can reach, via the interface given, some IP
address mentioned in the route entry (either the
recipient or the gateway), However, we are using
NET/ROM precisely because there is no IP station
within radio range who can handle our traffic. In
order to maintain the adjacency assumption at the
IP layer, we had to simulate the presence of an
adjacent IP station in the NET/ROM code.

An IP route which uses the NET/ROM support
looks just like any other routing table entry: it
consists of a destination, an interface, and an
optional gateway. The only difference is that the
interface is called "Netrom", and it% not a link
layer interface at all, although it appears that
way to the IP routing code. When the IP layer
sends a datagram down to the NET/ROM "interface"

for handling, it is actually calling a small stub
routine above the NET/ROM routing code. This stub
looks up the IP address in a table which
associates IP addresses, used at the IP layer and
above, with AX.25 callsigns, used by NET/ROM%
network layer. If it finds an entry for the given
IP address, it creates a NET/ROM network layer
datagram header with a destination address set to
the AX.25 callsign found in the association table,
prepends this header to the IP datagram, and hands
it off to the NET/ROM routing code.

The NET/ROM routing software now handles the
datagram exactly as it would any NET/ROM traffic
coming in from outside: it checks to see if there
is an entry for the destination AX.25 callsign in
its routing table. If there is, it opens a link
layer (AX.25) connection to the neighboring
NET/ROM node advertising the best quality route,
and forwards the message into the NET/ROM network,
to be delivered (ultimately) to the station whose
AX.25 address is that in the destination field of
the NET/ROM network header, and whose IP address
was that of the destination or gateway in the IP
routing table entry.

This approach was extremely successful. Not
one line of code needed to be changed in the IP
routing code of the original KA9Q package.

FEATURT3SToSUPPORTNBT/ROMPAcRETSUI!KHING

As implied above, the KA9Q package allows an
almost unlimited number of interfaces to be used
for receiving and forwarding packets. At the IP
layer, datagrams are routed from interface to
interface using information from the IP routing
table. We added a similar functionality to the
NET/ROM routing layer, allowing it to receive and
send NET/ROM traffic on any AX.25 interface it is
configured to use. This feature allows the KA9Q
software with NET/ROM support to be used as a
multi-port full duplex NET/ROM packet switch,
using standard TNCs or modem boards available for
the IBM PC. This is vastly superior to the
practice of wiring together several NET/ROM TNCs
with a diode bridge. There is no possibility of
collisions, since each TNC has its own serial port
or bus address, so the interfaces can all run at
full duplex, full speed through the switch. In
addition, this arrangement can be used with the
high-speed interfaces and modems now becoming
available, far exceeding the capabilities of a
standard TNC.

In several places in the United States,
excess bandwidth on commercial data links is being
used to carry NET/RCM traffic. These "wormhole*'
links work fairly well when there is only one
NET/ROM at each end, but their performance
degrades quickly if more are added. Beyond the
difficulties inherent in the diode bridging scheme
shown in the NET/ROM manual, there is an
additional problem not amenable to a simple
hardware solution. Most of the data links being
used are running through time-domain or
statistical multiplexing hardware, or through
public data networks. While all of these provide
some kind of carrier detect indication, in almost
every case that indication comes far too late to
avoid collisions. Carrier sense simply doesn't
work, since the carrier indication isn't there

68

when it is needed, and arrives just in time to
cause unnecessary delays afterwards. Performance
of such an arrangement is likely to degrade to
below that of schemes using no carrier sense at
all.

NET/ROM nodes use a simple serial framing
method to communicate with each other over their
serial ports. We have added support for this
framing method alongside the llKISS1l protocol which
the KA9Q package normally uses to communicate with
TNCS . It is possible to plug a number of NET/ROM
TNCs directly into the serial ports of an IBM PC,
and use the PC as a switch. Some of those NET/ROM
TNCs can be at the ends of *'wormhole* links.
These links can run at full duplex with no
collisions, thus getting maximum performance and
almost zero retries (assuming reliable data lines
and serial interface hardware). The NET/ROM
serial interface code is instrumented to provide
statistics on traffic volume and error rates on
its serial ports.

LESSONS LEARNED

The creation of the NET/ROM code has provided
some interesting lessons on how we should and
should not go about building amateur packet
networks. One of these lessons became apparent
before we even thought of writing the NET/ROM
code.

We would probably not even have added the
NET/ROM layer three support to the KA9Q package
had there been an easier way to accomplish what we
wanted, which was to use NET/ROM networks to
handle our IP traffic until we could build our own
IP network. Unfortunately, the NET/ROM software
has a rather unfriendly link layer multiplexor.
It sends "no layer 3" packets to the application
layer, and "NET/ROM1* packets to the NET/ROM
network layer, but anything else it consigns to
oblivion. We could have built fairly simple code
to establish connections and send our IP traffic
over NET/ROM transport circuits, but any packet
with a protocol ID of "IP" was simply dropped by
the NET/ROM software. So, lesson number one:

If you're going to build a networking
product, write the multiplexing code to be
inclusive, rather than exclusive. In other words,
if you get something with anI unfamiliar protocol
ID, wrap it up and send it on, remembering to
regenerate the PID properly on the other end.

Another problem we encountered was the lack
of a protocol ID field in the NET/ROM network
layer header. Both AX.25 packet headers and IP
datagram headers contain a field which indicates
what sort of higher level protocol stuff is
packaged inside. This is not unlike the cans on
your grocer's shelf: without a label, you have a
hard time telling the beets .from the beans. The
AX.25 protocol ID field makes link layer
multiplexing possible, and the protocol ID of an
IP datagram header allows many higher level
protocols to use its internetworking services.
Because the NET/ROM network header does not
contain a protocol ID field, there is no
straightforward way to put anything but a NET/ROM
transport packet inside. This is unwise. The
authors of NET/ROM may well have been unaware that

anyone would ever attempt a project such as ours,
but by leaving this feature out of their network
layer, they made it difficult, if not impossible,
to ever introduce other transport protocols into
their product line. So, lesson number two:

Include a protocol ID field in your link and
network layer headers, even if you can't think of
a use for it yet. Make it big enough to be
useful, and offer to be the repository of assigned
PIDs, so that a standard develops.

In experimenting with the auto-routing code
in our NET/ROM network implementation, we
discovered something that is a common complaint
among NET/ROM operators. This can be summed up by
the dictum, "Just because you can hear them,
doesn't mean they can hear you." It is not
unusual to have neighboring nodes that are
"alligatorsfT (big mouth, tiny ears) or for your
node to be a "rabbit" (big ears, tiny mouth).
Also, band openings on two meters happen quite
often, and usually last just long enough for you
to receive a routing broadcast from a station from
whom you will never hear again - at least until
the next band opening. Either situation leaves
your routing table cluttered with impossible
routes, which can lead to repeated link-layer
retries and transport layer failures. Routes
based on band openings age out fairly quickly.
Ones based on deaf neighbors come back, again and
again.

After a bit of experience with this
phenomenon, we added the "nodefilter" feature to
our implementation. The user may specify a list
of nodes which are the only ones from which route
broadcasts will be accepted, or alternately, may
specify a "reject list" of nodes whose broadcasts
will be routinely ignored. The lesson:

If your routing method involves broadcast in
an asymmetrical or inconsistent communications
environment, provide a way to restrict the routes
accepted to those offered by reliable nodes.

The implementation described was actually the
second one we did. The first one g,rabbed AX.25
interfaces away from the IP part of the KA9Q code,
and could only be used for NET/ROM and regular
AX.25 traffic. This appeared to be a horrible
idea from the moment the first version was
completed, and prompted an immediate rewrite,
producing a program that could act as a packet
switch for IP as well as NET/ROM. The lesson here
(besides "look before you leap") is:

If you're going to build a packet switch for
amateur use, support link layer multiplexing, and
try to make it multi-purpose, This is a hobby,
and the radios, tower space, and do:Llars are in
short supply. The more stuff you can do with a
single one of each, the happier you will be in the
long run.

EXPERIENCE

At this writing, experience with the software
is necessarily limited. It is only now being made
an official part of the official K:A9Q release
(thanks, Phil!), so it has not been widely
available as for as long as we would have wished.

69

Still, it has found its way into enough hands for
us to have some preliminary measurements and
impressions.

The Madison, Wisconsin NET/ROM node (MAD) is
connected to a node (MQTA) in Marquette, in the
Upper Peninsula of Michigan, via a multiplexed
commercial data line. We have conducted tests
between W9NK, in Madison, and KV9P, in Alpha,
Michigan. Both stations sent periodic routing
broadcasts to announce their presence to their
local nodes, The path chosen by NET/ROM was:

W9NK <-> MAD <-> MQT <-> MQTA <-> IRN <-> KV9P

where MQTA and IRN were NET/ROM or TheNet nodes in
Marquette and Iron Mountain, Michigan,
respectively, All nodes except the two using the
data line were on two meters, with a speed of 1200
baud.

Performance was surprisingly good, with TCP
round trip times settling in around 12 to 20
seconds, with a standard deviation of about nine
seconds. In spite of the number of hops,
performance was good enough to hold fairly
coherent keyboard-to-keyboard conversations.

We did note at least one case where duplicate
copies of datagrams were delivered by the NET/ROM
network. Since TCP discards duplicates, this
causes no problem in normal operations, but in the
case we noticed it resulted in two replies to the
same ICMP Echo Request message (produced by the
ping command).

Feedback from other users, particularly NOAN
in Iowa, illuminates a serious problem with the
management of existing NET/ROM networks: the
routing tables of these networks are so inaccurate
that many experienced users don't use the network
layer facilities at all! BBS mail forwarding
scripts are set up to establish connections to the
local NET/ROM node, request a transport connection
to a selected neighbor, then from that neighbor to
another, and so forth to the NET/ROM node in their
destination area. They have discovered that,
without human intervention, many NET/ROM networks*
routing facilities break down and become unusable.

This problem has some impact on normal
operations, in the sense that these multiple
transport sessions do not in any sense add up to
end-to-end protocol support. There is in fact no
transport facility (as we understand the term) in
use in these cases, since no acknowledgements
travel from one end of the communications path to

another. There may as well be no transport layer
in NET/ROM under these circumstances; the overhead
would at least be substantially lower, with no
additional loss of reliability.

Unfortunately, networks in such a
pathological state are unusable by our TCP/IP
software. Since we make no use of the NET/ROM
transport layer, we must rely entirely on the
accuracy of the network layer routing tables to
support the forwarding of our packets to their
destinations. If these tables are not correct,
our traffic will not get through.

The good news is that, in some areas where
the NET/ROM operators are also working with
TCP/IP, this problem is forcing them to pay
attention to the quality of their routing tables.
As we have noted above, NET/ROM is somewhat short
on facilities to do this, but a few things can be
and are being done with the tools available. One
side-effect of the TCP/IP NET/ROM support may be
an improvement in quality of service to all
NET/ROM users!

We hope, at some point, to produce a version
of this support that can be put into ROM and used
in a dedicated packet switch for hostile
environments. Such a switch would allow us to
begin building IP networks, while also offering
superior performance to the NET/ROM community. It
is our hope that the two user communities can work
together, sharing resources to build a better
network than either could alone.

Sincere thanks are due to Phil Karn, KA9Q,
who would have been rich (or at least, richer) by
now if he hadn't been dedicated to improving the
state of the art for all radio amateurs. Also,
thanks to everyone on the tcp-group mailing list,
who contributed helpful comments during the design
and development of the NET/ROM code. Special
thanks also to Howard Leadmon, WB3FFV, and John
Limpert, N3DMC, who got it to compile under Unix.

Individuals who helped test or provided
feedback on experience with the software were:
Duane Brummel, NX9K; Hasan Schiers, NOAN; and Dave
Reinhart, KV9P.

Phil Karn, KA9Q, reviewed the first draft of
this paper, providing many helpful comments and
suggestions.

70

