Dire Wolf Radio Interface Guide

First rough draft - Jan. 2021

More detailed information about gpiod for PTT control. - March 2024

There is a surprising amount of confusion about interfacing Dire Wolf with
radios. Perhaps it is because the documentation is scattered in different
places. Here, | have attempted to gather it all together in one place, hopefully
in an easy to use format.

Please share what you have discovered so others can benefit from your
experience. The best way would be to open an issue in the “direwolf-doc”
project (not the normal “direwolf” project) so nothing slips through the cracks.

I’'m especially interested in what you found when using soundcards and USB
PTT control built into some modern rigs.

Dire Wolf contains modems used to send Packet Radio & APRS digital data through ordinary voice
transceivers.

Just for fun, you might want to try APRS with acoustic coupling. Place a receiver near your laptop
computer and use the built-in microphone. Transceiver VOX could be used to transmit when the
computer makes a sound. Yes, this actually works, just to prove that it can be done.

A much better solution is to use wires for more predictable results and immunity from ambient sounds.

There are numerous ways to achieve this. If you have been using your computer to run NBEMS (FLdigi,
etc.), PSK-31, WSJT-X (FTS, etc.), RTTY, or SSTV, you probably have the necessary connection already.

~1~

This guide contains information on various types of possible interfaces, configuration examples, and
troubleshooting.

[EEN

W

(o))

Contents

TIE EQSY WAV ...eeiiiiiiiiiiiiiiiieeeeeeeeeeeteeeeeeeee e eeee e eese e eee e e e e e ee e ee e e e eeeeeeeeeeeaeeeeeeeeeeeeeeeseeeeeeeeeeeseeeeeneennnnnnnnnnnrns 5
Quick Start Guide for USB interfaces with PTT cONtrol...........coviiiiiiiiiiiiiiiiiee e 7
2.1 [T [0) U PPPTP PP 7
2.2 WWINAOWS .ottt ettt e e e e ettt et e e e e s s bbbttt e eeessaaanbbbeeeeeeeessannbaaeeeaeesssnnanes 7
2.3 Other OPErating SYSTEIMS ...uiviiiiiiiiiiiiieieieieee ettt eereereeeeeeeeeeeeeeaeeeeaaeereereeeettatararetrreeeareaeerrrrrrrrnrnnns 8
Setting proper transmit audio leVel ... 9
COMPUEET AUGIO o, 10
4.1 Special notes for USB AUdio AQQPLEISuuiiiiiiiiiiiiiiiiiiitieeeeseeeeesseeeeereererresseeersseseereeererrrrrrrrrne 11
CoNNECEION TO RAIO ..ueeieeeiiiiiee ettt st e e st e e s e e snr e e e e 13
What 80es iN betWeeN? ... 15
S I OSSPSR UPPPTPPP PRI 17
7.1 Serial Port (NOt reCOMMENAEA)vvvvvviiieieiiiieiiiieeeeeeeeeeeeeeeeeeeeerereeereeeeeeeeerearrrarrarera——a——————————. 18
2 A 1] [PP PP PPP S PPPPPOPN 21
7.2.1 Configuration - original (SYSTS) .uuueuuiiiiiiiiiiiiiiiiiiiiieeeeieteeeee e eeeee e eeeerseerererrrrrersaeeaeaaaaae 22
7.2.2 Configuration - new character device API (libgpiod).........ceuvvvriivieiieeieririiiiiiiiiieieieeeennannn, 23
7.3 HamIlib - CAT ettt et e s st e e s e e s e e e e snre e e e sanreee s 29
7.3.1 Hamlib PTT Example: Use RTS line of serial port............cccoooiiii 30
7.4 VOX (Voice Operated TranSMit).... s 32
7.5 USB Audio Adapter GPIO - LINUX......ccceeeeeieeee e, 35
7.6 USB Audio Adapter GPIO - LINUX......coeeeeeeeeieeee e, 37
7.7 USB Audio Adapter GPIO - WINOWSccoeeeeiiiiiiiceecee e, 42
Software Defined RAIOc.uuiiiiiiiiiieeiee et et e e st e e e 44
8.1 =40 o PSPPSR 44
8.2 o I o o PO USRS 45
8.3) B 3¢ SO PO PP UPPTTPPPPPPPPIIR 47
8.4 Gnu Radio — multiple simultaneous chanNElsoeiiiiiiiiiiiiiiiiiiiiiieiieereeeeeeeeeeeee e 52
8.5 Y0 R o101 o1 1T g Yoo) a1 oY= PPPPPPPPPPPRt 55
Lo TUL o1 1=T g Yoo} T o= PPPPPPPPPPRt 56
9.1 LCT= o T<T - | PP PP P PP 56

9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Not receiving anythingcoooeeeiiiiiii 57

Transmitter turns on but No one receives My SIgNaliiiiiiiiiiii s 57
TrANSMITEET SAYS ON.eiiiiiiiiiiiiiiie ettt e e e ettt e e e e e e e ettt e e e e e e eeeaabaa s seeeeeaesssaasseeeeeeesnnnnn 57
System crashes When transSmMittinguiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeveee e 57
“aplay —I” complains, “no soundcards found...”ouiiiiiiiiiiiiic e 58
Permission problem with USB Audio Adapter GPIO ..., 58
Baofeng transmitter stays on % second after PTT releasedcccoeeeeiiii, 59
DINAH transmit volume mysteriously decreases by itselfcccccii 59

1 The Easy Way

If you don’t have a suitable interface already, the easiest way is to use a USB audio interface specifically
designed for this purpose. It has audio in for receive, audio out for transmit, and PTT control to activate
the transmitter.

NEED PICTURE

Some examples are:

e DINAH https://hamprojects.info/dinah/

e PAUL https://hamprojects.info/paul/

e DRA-30 http://www.masterscommunications.com/products/radio-adapter/dra/dra30.html
e RA-35 http://www.masterscommunications.com/products/radio-adapter/ra35.html

e DMK URI http://www.dmkeng.com/URI_Order Page.htm

e RB-USB RIM http://www.repeater-builder.com/products/usb-rim-lite.html

I’'ve only used DINAH, in the list above, so | can’t vouch for proper operation of the others.

DINAH has a 6 pin mini DIN connector, same as the “data” (external modem) connector found on some
Kenwood, Icom, and Yaesu transceivers. A suitable cable is included. This is ideal for 9600 bps
operation.

&

Be sure to cut the JP-3 jumper so the COS signal, from the radio,

does not shut off the transmit audio.

PAUL has the same type of connector, and pinout, found on most traditional TNCs and trackers so you
can use existing or pre made radio-specific TNC cables.

Many of the others were originally intended for ALLSTAR voice over IP and have different connector
styles or pinouts. Check the pinouts carefully if using one of the others.

If you are using a Raspberry Pi, also consider the DRAWS. It sits right on top of the Raspberry Pi and has:

e Two radio interfaces.

e Voltage regulator so Raspberry Pi can be run from 12 volts.
e GPS for precise timing or building a tracker.

e Battery backed real time clock.

https://hamprojects.info/dinah/
https://hamprojects.info/paul/
http://www.masterscommunications.com/products/radio-adapter/dra/dra30.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.dmkeng.com/URI_Order_Page.htm
http://www.repeater-builder.com/products/usb-rim-lite.html

Visit http://nwdigitalradio.com/draws/ for more information.

http://nwdigitalradio.com/draws/

2 Quick Start Guide for USB interfaces with PTT control

This will get you up and running ASAP for the most common case of a single USB audio adapter.

A later section will discuss using multiple audio interfaces so multiple radios can be used.

2.1 Linux

Run the cm108 utility. You should see something like this:

VID PID Product Sound ADEVICE ADEVICE HID [ptt]
** @d8c 0012 USB Audio Device /dev/snd/pcmC2DOc plughw:2,0 plughw:2,0 /dev/hidrawe
** @d8c @012 USB Audio Device /dev/snd/pcmC2DOp plughw:2,0 plughw:2,0 /dev/hidraw@
** @d8c @012 USB Audio Device /dev/snd/controlC2 /dev/hidraw@

** = Can use Audio Adapter GPIO for PTT.

Devices marked with “**” can use CM108/119 GPIO pins for PTT control.
Edit the sample “direwolf.conf” configuration file.
a. Find the ADEVICE line and add the audio device name found above. Example:
ADEVICE plughw:2,0

b. Find the PTT example section, for channel 0, and add this or uncomment an existing line:

PTT CM108

Do not add a specific device path. It will be determined automatically.

2.2 Windows

Run the cm108 utility. You should see something like this:
(need example)
Edit the sample “direwolf.conf” configuration file.
a. Find the ADEVICE line and add the audio device name found above. Example:

ADEVICE USB

When direwolf starts up, it will produce a list of the audio devices available. Using the
associated number is not recommended because the number can change as new devices are
added or remove. It is best to use some unique substring of the name listed.

b. Find the PTT example section, for channel 0, and add this or uncomment an existing line:

PTT CM108

Do not add a specific device path. It will be determined automatically if there is only one USB
audio adapter. The multiple adapter case is explained in a later section.

2.3 Other operating systems

CM108/CM119 GPIO PTT is not available for other operating systems such as Mac OSX or BSD Unix.

More complicated cases, such as multiple USB audio adapters, are explained later.

3 Setting proper transmit audio level

The optimal peak FM deviation is somewhere around 3 or 3.5 kHz. Obviously if it is too low, you won’t
be heard. If too loud, the audio signal will be distorted, making it less likely to be decoded properly.

You might expect it to clip and become more like a square wave but that is not what happens. Instead
of being a sine wave, the top and bottom start to get jagged like this:

) 18957110 16157120 16957130 16:145.7140 161157150 16:15.7160 161571170 16:15.7180 16:45.7190 16:15.7200 16157210 16:45.7220

Here is a more extreme case of over-deviation:

33.2080 332090 12,2100 3lne 32120 AN 32140 D215 332160 332170 s 13,2190

ﬂ'..'h'n

1

! i ! A rr‘. i ﬁn'. f A “ i A 4 N \ i\ p \)
}' ‘.' .‘M' ff"l\ ;"'. N l'l o OO . VR LW Y W0 ‘f"l‘ £ Vil ;" Ll A M
FNE 2 F N W LT W W ON N N W o\ /N WARY T \
Vo ey \1..’ Y Ul W L W “r. (V |.| \'u \k" Vo lIA \ﬂ, \W k‘.{ WY \/

Some interesting examples of really terrible signals can be found in A-Closer-Look-at-the-WA8SLMF-TNC-
Test-CD.pdf. You don’t want to be included in my next collection of really bad signal examples. More
importantly you probably want others to understand what you are sending.

Most of us don’t have fancy radio test equipment, so how can the FM deviation be set properly?

You should be able to get a reasonably good approximation by ear. Adjust the transmit audio level up
and down while listening on a different radio. It will stop getting louder and sound different at the point
where it starts to distort. Turn it down a little so you can hear a decrease in volume. If you have an
oscilloscope to look at the received audio, that would be more scientific. Notice where it starts to
distort and decrease the amplitude to around % of that.

After you have configured Dire Wolf for your soundcard and PTT method, you can get a continuous test
tone by using “-x” followed by one of these letters on the command line:

e m for the mark tone, typically 1200 Hz.
e s for the space tone, typically 2200 Hz.
e 2 to alternate between them.

For a multi-radio setup, a radio channel, other than the first, can be specified by putting a number in
there too.

4 Computer Audio

Back in the early days of the IBM style personal computer, sound was not a standard feature. It was
later added with “sound cards” that were plugged into the motherboard. Now it is a standard feature
integrated into the system board. You can use the existing internal sound system or add a dedicated
interface for use by the radio. Most often this will be a USB device. The same “sound card” terminology
lives on although it is not a “card” anymore.

Starting in the upper left is an old “sound card” that plugged into the motherboard.

Below that is a USB audio adapter that runs in the 5 to 10 dollar range. It has stereo audio output for
headphones and mono audio input for a microphone. | added the wires sticking out. This is for PTT
control which we will discuss later.

The Signalink USB is an overgrown version of the USB audio adapter. It also has audio isolation
transformers and a relay to break up the ground between the radio and computer. It alsoa VOX circuit
that turns on the transmitter when transmit audio is present.

Finally, in the lower right we have a Raspberry Pi (RPi) with the UDRC audio board on top. Rather than
using USB, it uses the special IS bus designed for digital audio. The round 6 pin connector matches the
“data” connector found on many Kenwood, lcom, and Yaesu transceivers. A newer version of this is
called DRAWS. It has two radio connectors, GPS, real time clock, and a voltage regulator so the RPi can
be run from 12 volts.

DRAWS, and the earlier UDRC (pictured here) are high performance soundcards that fit on top of the
Raspberry Pi. They can use higher audio sampling rates making them ideal for 9600 baud and above.

~10 ~

The 6 pin mini-DIN radio connector matches the “data” connectors on many transceivers, making hook
up very easy. For details, see http://nwdigitalradio.com/draws/ and https://nw-digital-
radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration

A simpler audio board (not shown) with an I°C / SPI interface so it doesn’t tie up a USB port. This would
be especially beneficial with the Pi zero which has only a single USB port that you might want to use for
something else. https://wb7fhc.com/about-the-fe-pi.html

The Raspberry Pi Foundation even produces one of their own.
https://www.raspberrypi.org/products/igaudio-codec-zero/

4.1 Special notes for USB Audio Adapters

These all have two 3.5mm TRS (tip, ring, sleeve) connectors marked headphone and mic. The
headphone jack is stereo so you will want to use a stereo (3 conductor) cable. If you use a mono (2
conductor) cable, you would be shorting one of the outputs to ground.

The microphone connector is a little less obvious.

Here is a sample diagram for what you might find inside of one of these USB audio adapters:
http://www.gsl.net/om3cph/sb/CM108 DataSheet v1.6.pdf See second to last page.

It shows the microphone jack tip capacitively coupled to the CM108 chip with 1 uF. The ring has a
microphone bias voltage.

Here is another that is just the opposite: http://www.hardwaresecrets.com/datasheets/CM109.pdf

The tip is a DC bias voltage and the audio input is on the ring.

This http://www.repeater-builder.com/voip/pdf/cm119-datasheet.pdf has both on the ring and the tip
is not connected.

| guess you just need to try both and see what works. If you are not getting any audio input, or it is
extremely weak — only from crosstalk — that might be the problem. The printed circuit board,
mentioned a couple pages later, has a jumper so you can easily try either one.

Both the Syba product mentioned above, and a different one from Adafruit, have the tip and ring
connected together. They have an open circuit voltage of 4.51 volts which drops down to about half
that when connected to ground through a 1.5 k resistor.

=

The lesson, here, is that you should use a 3.5 mm stereo (TRS) plug, not

a mono (TR) plug for the microphone input. If you use a mono cable,

~11 ~

http://nwdigitalradio.com/draws/
https://nw-digital-radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration
https://nw-digital-radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration
https://wb7fhc.com/about-the-fe-pi.html
https://www.raspberrypi.org/products/iqaudio-codec-zero/
http://www.qsl.net/om3cph/sb/CM108_DataSheet_v1.6.pdf
http://www.hardwaresecrets.com/datasheets/CM109.pdf
http://www.repeater-builder.com/voip/pdf/cm119-datasheet.pdf

the longer sleeve on the plug might short the microphone input to
ground.

Finally, you might want to stick a 1 uF capacitor between the receive audio and the microphone input,
due to the DC bias, but | never found it to be necessary.

~12 ~

5 Connection to Radio

The major Japanese Ham Radio manufacturers standardized on the same 6 pin mini DIN connector for
use with external modems such as a packet radio TNC. It’s usually labeled “data” when it is really audio.
| would have called it “external modem” but they didn’t ask me for my advice.

“Data Out 1200”

Squelch/COR (Receive Audio)
“DATA Out 9600" PTT
(FM Discriminator)
GND/ICOM “‘Data In®

(Transmit Audio)

Stephen H. Smith WABLMF@aol.com 10 March 201

Alinco has the equivalent but it uses a different connector style.

Use this if it is available. The microphone and speaker connections are optimized for voice operation
and intentionally introduce distortion which makes it harder for the modem to operate effectively.

VHF/UHF FM transmitters reshape the audio with “pre-emphasis.” This boosts the higher frequencies at
+6 dB per octave. Suppose your modem was switching between 1200 and 2200 Hz tones of the same
amplitude.

'.]_7!0 4?.3]700 423800 4?..'!6'0 42,3.370 423830 4?.!“0 l?.}lBSO 423860 4).5!!7" 47,3‘880 42.38%0 4?.]‘00
1.0
05

, = = =i T e N I - -
05
-0

The pre-emphasis increases the amplitude of the higher tone by almost a factor of 2.

M..‘%D 11044970 11:04.4580 “?D‘;‘?DO 11:04.5000 11:04.5010 HNI 2020 11:04.5030 11:04.5040 1110(.5050 11:04.5060 11:04 5070 110480

10
8-
or— O N = = = = = e N = A NN
/I \/ — S — — = S 0 < N ~= NS =
03
10

In the receiver, de-emphasis decreases the amplitude of higher frequencies, again by 6 dB per octave. In
theory they should balance out

~ 13 ~

»

18957110 16157120 16957130 16:15.7140 16157150 16:15.7160 15:15..7170 16157180 16:15.7190 16:15.7200 16157210 16:45.7220

Frequencies below 300 Hz or so, are eliminated so you don’t hear the CTCSS tones (commonly known as
PL). This is all fine for voice but makes the modem’s job more challenging. Dire Wolf goes to a lot of
effort to compensate for this imbalance for superior decoding performance.

More details in A-Better-APRS-Packet-Demodulator-Part-1-1200-baud. pdf

The most common 1200 bps (bits per second) speed is somewhat tolerant of this distortion but for 9600
you absolutely need to use the special connector which bypasses the pre-emphasis and de-emphasis to

provide a flat wide audio bandwidth.

Trying to use the microphone and speaker connections, for 9600 bps, will be an exercise in futility.

~ 14 ~

6 What goes in between?

There is a wide range of options from air to more involved designs with audio isolation transformers and
an optoisolator for PTT. Others have covered this topic extensively so | will just provide some examples
and links.

This is what I’'m using for my digipeater / IGate.

Left: Connections to speaker and Microphone jack of transceiver.
Middle: Interface circuit with a timer to limit transmission time.

It uses the standard 9 pin connector found on most TNCs and trackers so the same
radio-specific cables can be used.

The two LEDs are for Data Carrier Detect (DCD) and the Push to Talk (PTT) signals.

The shape of the board was not intentional. It was just a scrap piece of perfboard left
over from another project.

Right: Raspberry Pi. A model 1 is more than adequate.

At the top is a USB audio adapter. The current software version can handle 3 audio
interfaces at the same time.

Lower left are GPIO connections for PTT and the DCD LED.

~15 ~

| usually take the receive audio and connect it directly to the audio input on the computer.
For transmit, | use a couple resistors, such as 10k and 1k, to

TO BE CONTINUED

~16 ~

7 PTT

Like other many other Ham Radio “soundcard” applications, Dire Wolf provides a wide variety of
methods to activate your transmitter. It sounds simple but there are many different options and some
require detailed explanation to use them most effectively.

e Serial Port

Back in the previous Century, personal computers had RS-232 serial “com” ports. Using
one of the control lines such as RTS (conveniently called Request to Send) was a popular
method. Serial ports are now about as scarce as hen’s teeth. You can still use this
method by using a USB to serial converter cable. You can also find interfaces which
have a USB-to-serial chip used only to generate the PTT signal.

e GPIO or GPIOD

If you have a single board computer, such as a Raspberry Pi, one of the General Purpose
Input Output (GPIO) pins can be used.

e GPIO pins inside a USB Audio adapter

The C-Media CM108 and CM119 chips are very popular for USB to Audio adapters. They
have GPIO pins that we can use for the PTT signal. This is a very tidy solution because
everything goes through a single USB cable.

e Hamlib - CAT (Computer Aided Transceiver)

Most ham transceivers made in the past 30 years or so, have the ability to be controlled
from a computer. Originally these used RS-232 serial ports but now USB is the norm.
The commands are not standardized so “hamlib” is generally used to deal with all the
different possibilities for various brands and models.

e VOX

The transmitter can be activated automatically when transmit audio is present. Use of
the VOX, built in to some transceivers, is generally a bad idea because it is designed for
voice and keeps the transmitter on much too long after the transmit audio has stopped.

This Dire Wolf Radio Interface Guide, new for release 1.7, gathers scattered information into one place,
goes into more detail than the User Guide, and should make finding answers easier.

~17 ~

7.1 Serial Port (not recommended)

Back in the previous Century, personal computers had RS-232 serial “COM” ports. Using one of the
control lines such as RTS (conveniently called Request to Send) was a popular method. Serial ports are
now about as scarce as hen’s teeth. One possible method is to use a USB to serial adapter.

This is NOT a very good approach and not recommended. When a computer is rebooted, the
default state for the RTS status line is usually on. So, if your computer is unexpectedly
rebooted, the RTS control line will cause your transmitter to stay on, annoying other people
and possibly damaging your transmitter.

If using this approach, you should ensure that the transmitter does not stay on for too long.
Many transceivers have a transmit time out option to limit the length of a transmission. You
could also use a hardware timer. An example is shown in the GPIO section.

If you do anything with RS-232 devices, you should get a cable like this with indicator lights built in. It

will save a lot of time and aggravation when troubleshooting. https://www.gearmo.com/shop/usb2-0-
rs-232-serial-adapter-led-indicators/

Don’t connect the RS-232 signal to your transceiver!!! You will need:

® A resistor of about 10k.

® General purpose diode (1N4148, 1N914, etc.) to prevent the base from going too far negative
and damaging the transistor.

® General purpose NPN transistor (2N3904, 2N2222, or whatever you have in your junk box).

~ 18 ~

https://www.gearmo.com/shop/usb2-0-rs-232-serial-adapter-led-indicators/
https://www.gearmo.com/shop/usb2-0-rs-232-serial-adapter-led-indicators/

Some example circuits can be found here:

® https://www.gsl.net/wm2u/interface.html

® http://zsli.blogspot.com/2010/02/zsli-soundcard-interface-ii-project.html

® https://kb3kai.com/tnc/soft-tnc.pdf
e http://www.dunmire.org/projects/Digital CommCenter/soundmodem/mySoundCardinterface.p
ng

To use a serial port (either built-in or a USB to RS232 adapter cable) for PTT control, use an option of this
form in your configuration file, in the appropriate CHANNEL section:

PTT device-name [-]rts-or-dtr [[-]rts-or-dtr]
(The [] indicate something is optional.)
For Windows the device name would be COM1, COM2, etc.
For Linux, the device name would probably be something like

e /dev/ttySO or /dev/ttyS1 for a COM port on the PC motherboard, or

e /dev/ttyUSBO or /dev/ttyUSB1 for a USB-to-RS232 adapter. You would also see this for
transceivers, like the IC-7100, that have a USB-to-serial converter built in.

You can also use the Windows format on Linux. COM1 is converted to /dev/ttySO, COM1 is
converted to /dev/ttyS1, and so on. Remember this would apply to a COM port on the motherboard
orinaPClslot. If USBisinvolved, the names would be different.

Examples:
PTT COM1 RTS
PTT COM1 -DTR
PTT /dev/ttyUSBO RTS

Normally the higher voltage is used for transmit. Prefix the control line name with “-” to get the
opposite polarity. Some interfaces want RTS and DTR to be driven with opposite polarity to minimize
chances of transmitting at the wrong time. You can specify two control lines with opposite polarity.
Example:

PTT COM1 -RTS DTR

~ 19 ~

https://www.qsl.net/wm2u/interface.html
http://zs1i.blogspot.com/2010/02/zs1i-soundcard-interface-ii-project.html
https://kb3kai.com/tnc/soft-tnc.pdf
http://www.dunmire.org/projects/DigitalCommCenter/soundmodem/mySoundCardInterface.png
http://www.dunmire.org/projects/DigitalCommCenter/soundmodem/mySoundCardInterface.png

PTT COM1 RTS -DTR

For the Easy Digi Complete interface, with built-in USB to serial adapter for PTT control, you should
drive both control lines with the same polarity. These are both equivalent:

PTT COM1 RTS DTR

PTT COM1 DTR RTS

Alternatively, the RTS and DTR signals from one serial port could control two transmitters. E.g.
CHANNEL 0
PTT COM1 RTS
CHANNEL 1

PTT COM1 DTR

~20 ~

7.2 GPIO

On Linux you can use General Purpose 1/0 (GPIO) pins if available. This is mostly applicable to a single
board, such as a Raspberry Pi, BeagleBone, Orange Pi, etc., not a general purpose PC.

&

CAUTION! The general purpose input output (GP10) pins are connected directly

to the CPU chip. There is no buffering or other protection. The interface uses 3.3 volts
and will not tolerate 5 volt signals. Static discharge, from careless handing, could

destroy your Raspberry Pi.

There are many GPIO pins. How would you choose an appropriate one? | would try to avoid those with

special functions such as UART, SPI, PWM, or I°C. These are my suggestions for the best choices. Note

that the physical pin number on the connector, and the GPIO number (used by the software), are not

the same.

For the original RPi model 1 (before the “plus” versions):

P1-11
P1-15
P1-16
P1-18
P1-22

GPIO 17
GPIO 22
GPIO 23
GPIO 24
GPIO 25

The later models (A+, B+, 2, 3, 4) have a larger connector with additional GPIO pins. Any of the pins

listed above or these new ones would be suitable.

e P1-29
e P1-31
e P1-32
e P1-33
e P1-35
e P1-36
e P1-37
e P1-38
e P1-40

GPIO 5

GPIO 6

GPIO 12
GPIO 13
GPIO 19
GPIO 16
GPIO 26
GPIO 20
GPIO 21

You could simply use a resistor and transistor to control PTT on your radio. Most modern rigs have a

Transmit Time Out setting to set the maximum transmit time. Use the lowest setting available but at

least 15 seconds. If something goes wrong, you won’t jam other people and possibly damage your rig.

~21 ~

If that feature is not available, you might want to add a protective circuit such as this one. It uses a
CMOS 555 timer (LMC555, TLC555, ICM7555, etc.) to limit transmissions to about 10 seconds in case
something goes wrong. Don’t try using the original 555 because it needs a minimum of 4.5 volts and we
have only 3.3 here. The time can be increased by making the 10 uF capacitor larger. It’s roughly 1
second for each uF.

One person reported that the timeout did not work properly and the problem was solved by adding a
0.01 pf capacitor from pin 4 to ground. | suspect this was caused by RF, from the transmitter, getting
into the digital circuitry.

- A/
305V

7.2.1 Configuration - original (sysfs)

This section describes the old method which is now deprecated. Depending on your operating system, it
might still be available. If not, you will need to use the new method in the next section.

Add a PTT GPIO command to each CHANNEL section. Precede the pin number with “-“ to invert the
signal.

PTT GPIO [-]pin-number

~ 22 ~

Examples:
PTT GPIO 25

PTT GPIO -25

There are more details in the Raspberry-Pi-APRS.pdf document.

Behind the scenes, the GPIO pins have device paths such as /sys/class/gpio/gpio25. You could set the
pin state with a command such as:

echo 1 > /sys/class/gpio/gpio25/value
You don’t need to know that level of detail; I’'m just providing a lead in for the next section.

This functionality has been removed for the bookworm version of Raspberry Pi OS for the RPi 5. We
now need to use a new method, which unfortunately is a little more complicated. | would like to hide
all the details behind the scenes but haven’t figured out a way to do that yet.

If you try using the old method on a Raspberry Pi 5 with bookworm, you should get a message
something like this:

Error writing "14" to /sys/class/gpio/export, errno=22
Invalid argument
It looks like gpio with sysfs is not supported on this operating system.
Rather than the following form, in the configuration file,
PTT GPIO 14
try using gpiod form instead. e.g.
PTT GPIOD gpiochip0 14
You can get a list of gpio chip names and corresponding 1/0 lines with "gpioinfo" command.

7.2.2 Configuration - new character device API (libgpiod)

(New in release 1.8 - “dev” branch as | write this.)
Here are some explanations of the difference:

https://embeddedbits.org/linux-kernel-gpio-user-space-interface/

https://www.beyondlogic.org/an-introduction-to-chardev-gpio-and-libgpiod-on-the-raspberry-pi/

~ 23 ~

https://embeddedbits.org/linux-kernel-gpio-user-space-interface/
https://www.beyondlogic.org/an-introduction-to-chardev-gpio-and-libgpiod-on-the-raspberry-pi/

(1) You must install these two packages and recompile.
sudo apt install gpiod libgpiod-dev

(2) You must rebuild from source for release 1.8 (currently in “dev” branch). Be sure to remove the old
build directory. Otherwise cmake might use cached information and not include the new library.

cd direwolf

git pull

git checkout dev
rm -rf build
mkdir build

cd build

cmake ..

make -j4

sudo make install

(3) When direwolf starts up, it should have libgpiod listed among the optional features included:

Includes optional support for: libgpiod

If you don’t see libgpiod in there, go back and fix it. The following commands won’t work without it.

Unfortunately we can no longer simply refer to the GPIO pin with just a number. We need to specify:

e The gpio controller name, named gpiochipN although it’s not a separate chip.
e The line number.

Type “gpioinfo” to get a list of the gpiochips and their lines.

On a Raspberry Pi 3 (Debian 11 - bullseye) it looks like this:

$ gpioinfo

gpiochip® - 54 lines:
line o: "ID_SDA" unused input active-high
line 1: "ID_SCL" unused input active-high
line 2: "SDA1" unused input active-high
line 3: "scL1" unused input active-high
line 4: "GPIO_GCLK" unused input active-high
line 5: "GPIO5" unused input active-high
line 6: "GPIO6" unused input active-high
line 7: "SPI_CE1_N" unused input active-high
line 8: "SPI_CE@_N" unused input active-high
line 9: "SPI_MISO" unused input active-high
line 10: "SPI_MOSI" unused input active-high
line 11: "SPI_SCLK" unused input active-high
line 12: "GPIO12" unused input active-high
line 13: "GPIO13" unused input active-high

~ 24 ~

line 14: "TXD1" unused input active-high

line 15: "RXD1" unused input active-high
line 16: "GPIO16" unused input active-high
line 17: "GPIO17" unused input active-high
line 18: "GPIO18" unused input active-high
line 19: "GPI019" unused input active-high
line 20: "GPI020" unused input active-high
line 21: "GPIO021" unused input active-high
line 22: "GPI022" unused input active-high
line 23: "GPIO23" unused input active-high
line 24: "GPIO024" unused input active-high
line 25: "GPIO25" unused input active-high
line 26: "GPIO26" unused input active-high
line 27: "GPI027" unused input active-high
line 28: "NC" unused input active-high
line 29: "LAN_RUN_BOOT" unused input active-high
line 30: "CTSe" unused input active-high
line 31: "RTSO" unused input active-high
line 32: "TXDO" unused input active-high
line 33: "RXDO" unused input active-high
line 34: "SD1_CLK" unused input active-high
line 35: "sSD1_CMD" unused input active-high
line 36: "SD1_DATAQ" unused input active-high
line 37: "SD1_DATA1" unused input active-high
line 38: "SD1_DATA2" unused input active-high
line 39: "SD1_DATA3" unused input active-high
line 40: "PWMe_ouT" unused input active-high
line 41: "PWM1_oOUT" unused input active-high
line 42: "ETH_CLK" unused input active-high
line 43: "WIFI_CLK" unused input active-high
line 44: "SDAQ" unused input active-high
line 45: "scLe" unused input active-high
line 46: "SMPS_SCL" unused input active-high
line 47: "SMPS_SDA" unused output active-high
line 48: "SD_CLK_R" unused input active-high
line 49: "SD_CMD_R" unused input active-high
line 50: "SD_DATA@_R" unused input active-high
line 51: "SD_DATA1_R" unused input active-high
line 52: "SD_DATA2_R" unused input active-high
line 53: "SD_DATA3_R" unused input active-high
gpiochipl - 2 lines:
line ©: unnamed "ACT" output active-high [used]
line 1: unnamed unused input active-high
gpiochip2 - 8 lines:

line ©: "BT_ON" unused output active-high
line 1: "WL_ON" unused output active-high
line 2: "STATUS_LED" unused output active-high
line 3: "LAN_RUN" unused output active-high
line 4: "HDMI_HPD_N" "hpd" input active-low [used]
line 5: "CAM_GPIO®" "caml_regulator" output active-high [used]
line 6: "CAM GPIO1" unused output active-high
line 7: "PWR_LOW_N" "PWR" input active-high [used]

On the RPi 5 (Debian 12 - bookworm), it looks like this:

$ gpioinfo
gpiochip® - 32 lines:
line ©: " unused input active-high

line 1: "2712_BOOT_CS_N" "spil® CS@" output active-low [used]

~ 25 ~

line "2712_BOOT_MISO" unused input active-high

2
line 3: "2712_BOOT_MOSI" unused input active-high
line 4: "2712_BOOT_SCLK" unused input active-high
line 5: " unused input active-high
line 6: " unused input active-high
line 7 "t unused input active-high
line 8: " unused input active-high
line 9: " unused input active-high
line 10: " unused input active-high
line 11: "t unused input active-high
line 12: E unused input active-high
line 13: " unused input active-high
line 14: "PCIE_SDA" unused input active-high
line 15: "PCIE_SCL" unused input active-high
line 16: "t unused input active-high
line 17: BC unused input active-high
line 18: "t unused input active-high
line 19: RC unused input active-high
line 20: "PWR_GPIO" "pwr_button" input active-low [used]
line 21: "2712_G21_FS" unused input active-high
line 22: .- unused input active-high
line 23: " unused input active-high
line 24: "BT_RTS" unused input active-high
line 25: "BT_CTS" unused input active-high
line 26: "BT_TXD" unused input active-high
line 27: "BT_RXD" unused input active-high
line 28: "WL_ON" "wl_on_reg" output active-high [used]
line 29: "BT_ON" "shutdown" output active-high [used]

line 30: "WIFI_SDIO_CLK" unused input active-high

line 31: "WIFI_SDIO_CMD" unused input active-high
gpiochipl - 4 lines:

line ©: "WIFI_SDIO_D®@" unused input active-high

line 1: "WIFI_SDIO_D1" unused input active-high

line 2: "WIFI_SDIO_D2" unused input active-high

line 3: "WIFI_SDIO_D3" unused input active-high
gpiochip2 - 17 lines:

line ©: "RP1_SDA" unused input active-high
line 1: "RP1_ScCL" unused input active-high
line 2: "RP1_RUN" "RP1 RUN pin" output active-high [used]
line 3: "SD_IOVDD_SEL" "vdd-sd-io" output active-high [used]
line 4: "SD_PWR_ON" "sd_vcc_reg" output active-high [used]
line 5: "SD_CDET_N" unused input active-high
line 6: "SD_FLG_N" unused input active-high
line 7: "t unused input active-high
line 8: "2712_WAKE" unused input active-high
line 9: "2712_STAT_LED" "ACT" output active-low [used]
line 10: "t unused input active-high
line 11: "t unused input active-high
line 12: "PMIC_INT" unused input active-high
line 13: "UART_TX_FS" unused input active-high
line 14: "UART_RX_FS" unused input active-high
line 15: "t unused input active-high
line 16: "t unused input active-high
gpiochip3 - 6 lines:
line ©: "HDMIO_SCL" unused input active-high
line 1: "HDMIO_SDA" unused input active-high
line 2: "HDMI1_scL" unused input active-high
line 3: "HDMI1_SDA" unused input active-high
line 4 "PMIC_SCL" unused input active-high
line 5: "PMIC_SDA" unused input active-high

gpiochip4 - 54 lines:

~ 26 ~

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high
active-high

active-high
active-high
active-high

active-low [used]

active-high

0: "ID_SD" unused input
1: "ID_SscC" unused input
2: "PIN3" unused input
3: "PIN5" unused input
4: "PIN7" unused input
5: "PIN29" unused input
6: "PIN31" unused input
7: "PIN26" unused input
8: "PIN24" unused input
9: "PIN21" unused input
10: "PIN19" unused input
11: "PIN23" unused input
12: "PIN32" unused input
13: "PIN33" unused input
14: "PIN8" unused input
15: "PIN1O" unused input
16: "PIN36" unused input
17: "PIN11" unused input
18: "PIN12" unused input
19: "PIN35" unused input
20: "PIN38" unused input
21: "PIN4Q" unused input
22: "PIN15" unused input
23: "PIN16" unused input
24: "PIN18" unused input
25: "PIN22" unused input
26: "PIN37" unused input
27: "PIN13" unused input
28: "PCIE_RP1_WAKE" unused input active-high
29: "FAN_TACH" unused input
30: "HOST_SDA" unused input
31: "HOST_SCL" unused input
32: "ETH_RST_N" "phy-reset" output
33: " unused input
34: "CDO_IOQ MICCLK" "cam@_reg" output

"CD@_SDA"
"CDO_SCL"
"CD1_SDA"
"CD1_SCL"

"USB_OC_N"
"FAN_PWM"

"2712_WAKE"

unused
unused
unused
unused
unused

: "USB_VBUS_EN" unused output

unused

input
input
input
input
input

active-high

: "CDO_IO0Q MICDATO" unused input active-high
: "RP1_PCIE_CLKREQ_N" unused input active-high

active-high
active-high
active-high
active-high
active-high

active-high

input

active-high

: "RP1_STAT_LED" "PWR" output active-low [used]

unused output active-high

unused

unused
unused
unused
unused

Notice there are some important differences.

gpiochip4 (four) rather than gpiochipO (zero).

~ 27 ~

input

input
input
input
input

: "CD1_IO0@_MICCLK" "caml_reg" output active-high

active-high

: "CD1_IO1_MICDAT1" unused input active-high
: "EN_MAX_USB_CUR" unused output active-high

active-high
active-high
active-high
active-high

[used]

[used]

e The same line is named PIN18 rather than GP1024.
This means that a configuration for one RPi model might not work on a different model.

(You are probably thinking, why not automatically figure out the gpiochip name from the line name.
That would be feasible if the naming was consistent. Instead we see GPIO24 in one case and PIN18 in
another. Other similar computers might have an entirely different naming convention.)

Example:

In the RPi 3 case, we need to use gpiochip0 and we see the familiar names such as GP1025
corresponding to line 25.

In this case, the configuration file PTT command would be:
PTT GPIOD gpiochip0 25
“gpiochip0” is case sensitive; it must be exactly as seen in the list from gpioinfo command.

If you wanted to invert the signal so transmit would be indicated by a low voltage, put a minus sign
immediately in front of the line number:

PTT GPIOD gpiochip0 -25

Suggestions on how to make this easier on the user are most welcome. | would like to continue using
the old configuration file representation and hide all the ugly details when using the new library. |only
use two RPi models as examples, but we must keep this general so it will work with other similar single
board computers which might have different naming conventions.

~ 28 ~

7.3 Hamlib - CAT

Most ham transceivers made in the past 30 years or so, have the ability to be controlled from a
computer. Originally these used RS-232 serial ports but now USB is the norm. The commands are not
standardized so “hamlib” is generally used so each application developer doesn’t have to figure out all
the different possibilities for various brands and models.

Hamlib support is an optional feature. When direwolf starts up, it displays the optional features that
were included when it was built. e.g.

Includes optional support for: gpsd hamlib cml08-ptt
If you don’t see “hamlib” in there, you will need to rebuild it from source.
If the optional feature is enabled, you can also use this form of the PTT configuration:
PTT RIG model port [rate]
Where,
model identifies the type of radio.

A rig number, not a name, is required here.
For example, if you have a Yaesu FT-847, specify 101.
See https://github.com/Hamlib/Hamlib/wiki/Supported-Radios for details.

Get a list of values by running “rigctl --1list”.
2 is used to communicate with “rigctld.”

“AUTO” will try to guess what is connected.

port is name of serial port connected to radio.

In the case where model is 2, this would be a host name/address
and optional port number. Default portis 4532

rate is an optional serial port rate for CAT control.
Sometimes you might need to override the hamlib default behavior.

Here is an example of where the serial port data rate had to be set explicitly:
https://groups.io/g/RaspberryPi-4-HamRadio/topic/75478708

~ 29 ~

https://github.com/Hamlib/Hamlib/wiki/Supported-Radios
https://groups.io/g/RaspberryPi-4-HamRadio/topic/75478708

Examples:

e Yeasu FT-817 on /dev/ttyUSBO: PTT RIG 120 /dev/ttyUSBO 9600
e rigctld on localhost: PTT RIG 2 localhost:4532
e Tryto guess whatis on /dev/ttySO: PTT RIG AUTO /dev/ttySO

For more details, see http://sourceforge.net/p/hamlib/wiki/Hamlib/

FAQ: http://sourceforge.net/p/hamlib/wiki/FAQ/

This would be a good place to go with questions: http://sourceforge.net/p/hamlib/discussion/

7.3.1 Hamlib PTT Example: Use RTS line of serial port.

A normal person would not want to use this Rube Goldberg approach because this directly supported by
direwolf. This is just a training exercise to show how it works.

First let’s try it manually. In one terminal window, start up a daemon with the desired configuration.

rigctld -m 1 -p /dev/ttyS0 -P RTS -t 4532

“/dev/ttyS0” is the serial port on the mother board.
“-m 1”is for the “dummy” backend, not some particular type of radio.

“—t 4532”is not really necessary because that is the default port.

In another window,

echo "\set ptt 1" | nc localhost 4532

~ 30 ~

http://sourceforge.net/p/hamlib/wiki/Hamlib/
http://sourceforge.net/p/hamlib/wiki/FAQ/
http://sourceforge.net/p/hamlib/discussion/

echo "\set ptt 0" | nc localhost 4532
echo "\set ptt 1" | nc localhost 4532
echo "\set ptt 0" | nc localhost 4532

You should observe that the RTS control line changed. If you bought the USB to Serial cable that |
suggested, the built-in indicator lights reveal what is going on. Otherwise, hook up a voltmeter. Next...

rigctl -m 2 -r localhost:4532
T 1

0
1
0

Q 3 33

“—m 2” means talk to “rigctld.”

“—r localhost:4532” indicates where rigctld is running. You can leave off the “:4532” because that
is the default port. You might also see examples with 127.0.0.1 which is equivalent but obscure and
confusing to those without any networking background. Actually, it seems you can omit the “-r"” option
entirely because localhost is the default for rig “model” 2.

Again, we should observe the RTS line of serial port /dev/ttyS0O changing. To use this for PTT, put this in
your Dire Wolf configuration file:

PTT RIG 2 localhost:4532

The “2” is very important. It means communicate with the instance of “rigctld” that we already started
up. Inthis case it is running on the same host but it could be running on a different computer.

~ 31 ~

7.4 VOX (Voice Operated Transmit)

The transmitter can be activated automatically when transmit audio is present. The SignalLink USB uses
this technique. Be sure to turn the Delay setting to the minimum position so the transmitter turns off
quickly after transmit audio stops.

Here are some examples of homebrew circuits:

e http://wa8Imf.net/ham/tonekeyer.htm#NEW
e https://sites.google.com/site/kh6tyinterface/

It might be tempting to use the VOX built into your transceiver and avoid the extra circuitry for the PTT
signal. Is this a good idea?

e For APRS, the short answer is NO!

e For connected mode packet, the short answer is NO o0 o0

First let’s consider the case where we have a wired connection to activate the transmitter. The
transmitter is turned on, we send our digital data as an audio signal, and then turn off the transmitter
when the audio is finished. Another station detects no other signal, waits a random amount of time
(usually less than 1/3 of a second), and starts transmitting.

Wired PTT

My Transmit Audio

Digital Data as Audio

Another station Digital Data as Audio [

VOX stands for Voice Operated Transmit. It is designed for voice which contains small gaps between
words and sentences. It responds quickly when speech begins so it doesn’t chop off too much from
beginning of the first word. We don’t want the transmitter going on and off for every little gap in
speech so there is a built in delay before turning the transmitter off again. This is usually referred to as
the “VOX delay.” On one popular HT, the default is 500 milliseconds and the minimum setting is 250.

~ 32 ~

http://wa8lmf.net/ham/tonekeyer.htm#NEW
https://sites.google.com/site/kh6tyinterface/

Another popular HT doesn’t allow the delay time to be configured and the documentation doesn’t
mention how long it is. It would not be unreasonable to assume they picked something around the
default time for another brand.

Keeping the transmitter on a half second after the sound ends is fine for voice. But what about digital
data? We saw in the previous section that another station waiting for a clear channel, will usually
transmit less than 1/3 second after it no longer hears another digital signal.

My Transmit Audio

Digital Data as Audio

N < VOX delay >

PTT from VOX

Another station

Digital Data as Audio [

Using VOX in this case might be easier but, it is:

e Inconsiderate of the community:

You are interfering with others by sending a quiet carrier, possibly overpowering other
stations trying to be heard.

e Bad for APRS:

In this case, you will probably miss the beginning of the next station transmitting
because you haven’t switched back to receive yet.

~ 33 ~

e REALLY BAD for connected mode packet:

Connected mode uses a rapid back-and-forth exchange to acknowledge that
information was received and retry if something gets lost. It is quite likely that the next
frame is a response to something you sent. If that response frame is lost, your station
will keep trying over again and eventually give up.

My recommendation is to avoid using VOX, built into a transceiver, unless you can be sure the
transmitter will turn off very soon (e.g. less than 50 mSec.) after the audio signal is no longer present. If
you insist on using VOX, be sure the “VOX delay” setting is at the shortest setting.

The SignalLink USB has a built in VOX circuit but it is adjustable into an appropriate range. Turn the delay
down to the minimum (fully counterclockwise). According to the documentation, this should turn off
the transmitter around 15 or 30 milliseconds after the transmit audio has ended.

~ 34 ~

7.5 USB Audio Adapter GPIO - Linux

The C-Media CM108 and CM119 chips are very popular for USB to Audio adapters. They have GPIO pins
that we can use for the PTT signal. This is a very tidy solution because everything goes through a single

USB cable rather than having separate audio and PTT.

The C-Media CM108, CM119, and similar chips, used in many USB-audio adapters, have varying numbers
of general purpose input output (GPIO) pins. These are sometimes connected to push buttons or LEDs.

C-Media GPIO CcM108 CM108AH CM109
chip number CM108B CM119
pin CM119A
CM119B
43 1 X X X
11 2 X X
13 3 X X X
15 4 X X X
16 5 X
17 6 X
20 7 X
22 8 X

Here, | pried open a SYBA USB Audio adapter, which happen to contain a CM119, and soldered wires to
ground and one of the GPIO pins. This signal would then need to go to a resistor and transistor to pull

down the PTT control.

;
W a arl
e AT SN

i

)
1
j
o
'l
.

~ 35 ~

Many products use this technique. Some examples:

e DINAH https://hamprojects.info/dinah/

e DMK URI http://www.dmkeng.com/URI_Order Page.htm

e RB-USB RIM http://www.repeater-builder.com/products/usb-rim-lite.html

¢ RA-35 http://www.masterscommunications.com/products/radio-adapter/ra35.html|

There are several similar homebrew projects:

http://www.gsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.egloff.eu/index.php/en/la-technique/interface-audio-usb

GPIO 3 (pin 13) is used in the homebrew designs because it is easier to tack solder a wire to a pin on
the end. All of the commercial products, that I’'m aware of, also use the same pin for PTT. It is possible
to specify a different pin, in the configuration file, but you probably won’t need to.

~ 36 ~

https://hamprojects.info/dinah/
http://www.dmkeng.com/URI_Order_Page.htm
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.egloff.eu/index.php/en/la-technique/interface-audio-usb

7.6 USB Audio Adapter GPIO - Linux

The tricky part is that the single physical USB adapter shows up as separate audio and HID (human
interaction) devices. Dire Wolf includes a utility application, called cm108, to help you make sense of it
all.

This is some of what we see for a single USB Audio Adapter:

$ cml0O8
VID PID Product Sound ADEVICE ADEVICE HID [ptt]
0d&c 0008 C-Media USE Audic Dewice Jfdev/snd/pcnClDlc plughw:1,0 plughw:Device, 0 Jdev/hidraw3
Od&c 0008 (C-Media USBE Audio Dewice J/dev/snd/pcmClD0p plughw:1,0 plughw:Device, 0 Jdev/hidraw3
Od8c 0008 C-Media USBE Audio Device /dew/snd/controlCl fdev/hidraw3
413c 2010 Dell USE Eevboard fdev/hidrawl
046d c040 USB-P5/2 Optical Mouse fdev/hidraw2
= Can use Audio Adapter GPIO for PTT.

VID is Vendor ID. 0d8c is C-Media.
PID is Product ID. This is not a good way to distinguish different chips because it is often programmable.

A single USB audio adapter shows up as multiple sound devices:

e pcmC1D0c Card 1, Device 0, “c” for capture (i.e. input)
e pcmC1D0p Card 1, Device 0, “p” for playback (i.e. output)
e controlC1 Card 1, volume control, etc.

The first ADEVICE column has what you would normally use for ADEVICE in the configuration file. The
“1” and “0” correspond to the “card” and “device”. “Device” is an unfortunate term because it has too
many different meanings. But that is the terminology used by ALSA.

Ignore the second ADEVICE column for now. We will get back to it later.

Finally HID is the corresponding GPIO device in the same chip. There is not a simple relationship
between the names. The same USB audio adapter is Sound Card 1 and HID 3.

In this case, your direwolf configuration file would contain:

ADEVICE plughw:1,0
CHANNEL ©
PTT cmle8

When direwolf is started up, important configuration settings are displayed as a help in troubleshooting.

Reading config file direwolf.conf
Audioc device for both receive and transmitc: plughw:1,0 (channel Q)

nannel H al- Lkl Aol & WU HZ, &+, 21 Sample Iate

Using fdev/hidraw3 GPIQ 3 for channel O PTT control.

~ 37 ~

It automatically figures out which HID corresponds to the soundcard. You could optionally override the
automatic mapping but you would probably end up “shooting yourself in the foot” as we will see later.
All of the products and homebrew projects, that | have seen, all use GPIO 3 so that is the default if you
don’t specify a different GPIO bit number.

Now let’s add two more USB audio adapters.

VID

Odsc
Odsc
Odsc
0dsc
Odsc
Odsc
1b3f
1b3f
1b3f
413c
046d

Can

i~ 5 cmlO8

FID Froduct

0008 C-Media
0008 C-Media
0008 C-Media
000c C-Media
000c C-Media
000c
2008 USB
2008 TUSB
2008
2010
c040

USEB
USEB
USEB
UsSB

RAudio Device
RAudio Device
RAudio Device
Headphone Set
USE Headphone Set
USE Headphone Set
RAudio Device

Audio Dewvice

RAudio Device

Dell USE Eeyboard
USE-P5/2 Optical Mouse

use Audio Adapter GPIC for PIT.

Jfdev/snd/pcmC1lD0c
Jdev/snd/pcmClD0p
/dev/snd/controlCl
Jdev/snd/pcnC3Dic
/dev/snd/pcmC3D0p
/dev/snd/controlC3
/dev/snd/pcmC2hic
Jfdev/snd/pcnC2Dap
fdev/snd/controlC2

Put this in our configuration file to use 3 radios:

Once again, it automatically matches up the soundcard number with the corresponding HID.

Using
Using

ADEVICE plughw:1,0
CHANNEL ©
PTT cmle8

ADEVICE1l plughw:3,0
CHANNEL 2
PTT cmle8

ADEVICE2 plughw:2,0
CHANNEL 4
PTT cmle8

USB audio card 2
device for bkoth
device for bkoth
device for bkoth

ot

= 3 U Lndj,
ev/hidraw3 GPIO 3 for
fdev/hidraws GPIO 3 for
fdev/hidrawd4 GPIC 3 for

(Device_ 1) i=s
receive
receive
receive

Eeading config file direwolf.conf
Warning
Audio
Audio
Audio

and transmit:
and transmit:
and transmit:

& LSSV

channel O PTT cont

Hz, &+, 44

rol.

ADEVICE

plughw:
plughw:

plughw:3
plughw:3

plughw:
plughw:

not a device known
plughw:1,0
plughw: 3,0
plughw: 2,0

HZ, ;—y 149

W oW
oo
=3 H
oo
=}
o

IH
[}

channel 2 PTT control.
channel 4 PTT control.

to
[channel
[channel
[channel

ADEVICE

plughw:
plughw:

plughw:
plughw:

plughw:
plughw:

Dewvice, O
Dewvice, O

Set,0
Set,0

Device_ 1,0
Device_1,0

work with

0}
z)

4]

P10

Lo

2ID [ptt]
Sdev/hidraw3
Jfdev/hidraw3
Jfdev/hidraw3
fdev/hidraws
Jfdev/hidraw5s
Jfdev/hidraw5s
/dev/hidraws
/dev/hidraw4
Jfdev/hidrawd
Jfdev/hidrawl
/dev/hidraw2

PTIT.

Note that the third USB Audio Adapter does not have a C-Media chip so attempts to use the GPIO pins
will probably fail. | can’t test it to find out. | pried one of the adapters open and the chip was buried
under a blob so there were no pins to probe.

~ 38 ~

Next, we will unplug this keyboard and mouse then reboot. We don’t need them because I’'m logging in
with ssh over the network.

i~ % cml08

VID PID Product Sound ADEVICE ADEVICE HID [ptt]
& 0dS8c 0008 C-Media USE RAudio Device /dev/snd/pcmClD0c plughw:1,0 plughw:Device, 0 fdev/hidraw0
#% 0d8c 0008 C-Media USB Audioc Dewvice Jdev/snd/pcmClD0p plughw:1,0 plughw:Device, 0 Jdev/hidrawl
=% QdBc 0008 C-Media USE Audic Device fdev/snd/controlCl fdev/hidraw0
#% (Qd8c 000c C-Media USB Headphone Set fdev/snd/pcmC2D0c plughw:2,0 plughw:Set, 0 fdev/hidrawl
#% (0dBSc 000c C-Media USE Headphone Set fdev/snd/pcmC2D0p plughw:2,0 plughw:5Set, 0 fdev/hidrawl
& 0d8c 000c C-Media USE Headphone Set /dew/snd/controlC2 fdev/hidrawl

1b3f 2008 USB Audioc Device Jfdev/snd/pcnC3iDic plughw:3,0 plughw:Device_ 1,0 /dev/hidraw2

1b3f 2008 USB Audio Device Jdev/snd/pcmC3D0p plughw:3,0 plughw:Device_ 1,0 /dev/hidraw2

1b3f 2008 USB Audio Device fdev/snd/controlC3 fdev/hidraw2
#% = Can use Audioc Adapter GPIC for PTT.

What happened?
The soundcards are listed in the same order, but the numbers have changed.

e The soundcard numbers are now 1, 2, 3 rather than 1, 3, 2.
e The HID numbers are now 0, 1, 2 rather than 3, 5, 4.

That’s why you should not specify explicit HID numbers. They change when you add or remove USB
devices and reboot. Let direwolf figure out the relationship.

The soundcard numbers have also changed. Suppose you had

e plughw:3,0 connected to the radio for the APRS frequency.
e plughw:2,0 connected to the radio for the Packet BBS frequency.

After rebooting they have been reversed!
Don’t despair because there is an easy solution.

I've only been showing you part of the cm108 utility results. Here is the rest of it

Hotice that each USE Audio adapter is assigned a number and a name. These are not predictable so0 you could

end up using the wrong adapter after adding or removing other USB devices or after rebooting. You can assign a
name to sach USB adapter so you can refer to the same one each time. This can be based on any characteristics
that makes them unigque such as product id or serial number. Unfortunately these devices don't have unigue serial
nunmkbers so how can we tell them apart? A name can also ke assigned based on the physical USB socket.

Create a file like "/etc/udev/rules.d/85-my-usb-audio.rules" with the following contents and then reboot.

SUBSYSTEM!="sound", GOTC="my_usb_audio_end"

ACTION!="add", GOTO="my_usb audio end"
DEVPATH=="/devices/platform/soc/3f980000.usb/usbl/1-1/1-1.3/1-1.3:1.0/sound/card?", ATTR{id}="Fred"
DEVPLATH=="/devices/platform/soc/3f 000.usb/uskbl/1-1/1-1.4/1-1.4:1.0/z0und/card?", ATTR{id}="Wilma"
DEVPATH=="/devices/platform/soc/3£f980000. . usb/uskl/1-1/1-1.5/1-1.5:1.0/z0und,/card?", ATTR{id}="Pebhlez"
LABEL="my usk audio_end"

Follow the instructions. Copy/paste the last section into /etc/udev/rules.d/85-my-usb-audio.rules then
reboot

We can now turn our attention to the second ADEVICE column.

~ 390 ~

5 cmlOg

VID PID Product Sound ADEVICE ADEVICE HID [ptt]
#% (0dSc 0008 C-Media USE Audic Device /dev/snd/pcmClD0c plughw:1,0 plughw:Fred, 0 fdev/hidraw0
#% 0d8c 0008 C-Media USE Audic Device Jdev/snd/pcmClD0p plughw:1,0 plughw:Fred, 0 Jdev/hidrawl
** Qd8c 0008 C-Media USB Audio Device fdev/snd/controlCl fdev/hidrawd
#% (0dSc 000c C-Media USE Headphone Set /dev/snd/pcmC2D0c plughw:2,0 plughw:Wilma, 0 fdev/hidrawl
#% (0dSc 000c C-Media USE Headphone Set Jfdev/snd/pcmC2D0p plughw:2,0 plughw:Wilma, 0 fdev/hidrawl
#% 0d8c 000c C-Media USE Headphone Set /dev/snd/controlC2 Jdev/hidrawl
1b3f 2008 USB Audio Device Jfdev/snd/pcmC3D0c plughw:3,0 plughw: Pebbles, 0 Jdev/hidraw2
1b3f 2008 USB Audio Device Jfdev/snd/pcmC3D0p plughw:3,0 plughw:Pebbles, 0 fdev/hidraw2
1b3f 2008 USBE Audio Device /dew/snd/controlC3 /dev/hidraw2

#% = Can use Audio Adapter GPIO for PTT.

| can now put this in my configuration file, using a name rather than a number which can change.
ADEVICE plughw:Fred,©

The same technique could be used to assign names based on the VID/PID but that would not help with

multiple identical adapters.

Names can be assigned based on serial numbers but these adapters don’t have serial numbers.

So, we are left with assigning names based on the physical USB socket on the computer.

The keyboard will be plugged in again, and the second USB Audio Adapter (PID 000c) removed. After
rebooting again, we see:

£ cmlO8
VID PID Product Sound ADEVICE ADEVICE HID [ptt]
% 0d8c 0008 C-Media USE Audio Device fdev/snd/pcmClD0c plughw:1,0 plughw:Fred, 0 Jdev/hidrawd
#% (0d8c 0008 C-Media USB Audio Device fdev/snd/pcnClD0p plughw:1,0 plughw:Fred, 0 fdev/hidraw0
* Od8c 0008 C-Media USBE Audio Device /dew/snd/controlCl fdev/hidrawd
1b3f 2008 USB Audio Device fdev/snd/pcmC2D0c plughw:2,0 plughw:Pebbles, 0 fdev/hidraw3
1b3f 2008 TUSE Audio Device fdev/snd/pcnC2D0p plughw:2,0 plughw:Pebbles, 0 fdev/hidraw3
1b3f 2008 USB Audioc Device /dev/snd/controlC2 Jfdev/hidraw3
413c 2010 Dell USE Eeyboard fdev/hidraw2
046d c040 USB-P5/2 Optical Mouse fdev/hidrawd

#% = Can use Audio Adapter GPIC for PTT.

Once again, the numbers hav shifted around but the name remains associated with the same USB Audio
Adapter. Or more accurately, the USB socket that it is plugged into.

So for our final experiment, swap the two USB Audio Adapters. We don’t even need to reboot. We see
that the name is associated with the USB socket on the Raspberry Pi, not what is plugged into it.

VID PID
1b3f 2008
1b3f 2008
1b3f 2008
#% (Qdg&c 0008
#% (Qdg&c 0008
#% (Qdg&c 0008
413c 2010
046d c040

- £ cmlO8

Product

USE Audio Device

USE Audio Device

USB Audio Dewvice

C-Media USB Audio Device
C-Media USB Audio Device
C-Media USB Audio Device
Dell USEB Keyboard
USB-P5/2 Optical Mouse

#% = Can use Audio Adapter GPIC for PTT.

Jdev/snd/pcmClD0c
Jdev/snd/pcmClD0p
fdev/znd/controlCl
Jfdev/snd/pcmC2D0c
Jdev/snd/pcmC2D0p
fdev/snd/controlC2

~ 40 ~

ADEVICE

plughw:
plughw:

plughw:
plughw:

ADEVICE

plughw:
plughw:

plughw
plughw

:Pekbles, 0
:Pekkbles, 0

4ID [ptt]
Jfdev/hidrawl
Jfdev/hidrawl
fdev/nidrawd
Sdev/hidraw3
Jfdev/hidraw3
Jfdev/hidraw3
fdev/hidraw2
Sdev/hidraw4d

For more information on assigning persistent names by manufacturer, model, or serial number, see
https://github.com/dhltw/remoteAudio/wiki/Persistent-USB-Mapping-of-Audio-devices-(Linux)

~471 ~

https://github.com/dh1tw/remoteAudio/wiki/Persistent-USB-Mapping-of-Audio-devices-(Linux)

7.7 USB Audio Adapter GPIO - Windows

You might find it helpful to read the preceding Linux section first, to compare how these are different.

All of this magic is performed by the “udev” device manager on Linux. The Windows equivalent is
drastically different so an entirely new implementation needs to be created.

At the current time, | know how to get a list of the HIDs and set the GPIO pins but so far have not been
able to figure out how to find the relationship between HID and sound devices in the same package.

| would really like to provide the same completeness and convenience as on Linux, but so far | have not
been able to figure out how to do it. (Hint, hint, to any Windows programming experts.)

Reluctantly I’'m providing a half-baked implementation. It should be fine for those using a single USB
Audio Adapter but would be real annoying when trying to use multiple adapters.

First, let’s consider the case of a single USB Audio Adapter.

Your configuration file could contain this:

ADEVICE USB
CHANNEL ©
PTT cmle8

There is only a single USB audio device so it all works well.

Things get more complicated when there are multiple USB Audio Adapters.

|3 owl10B
vio
413¢
a13c¢
413c
413c
D461
DdBc
Od8c
1b3r
Ddic

* - Can

pi0
2040
2010
2010
2010
4d15
000c¢
000c
2008
0008

product

pell use Keyboard

Del1l use Keyboard

Dell use Keyboard

Dell use Keyboard

uss Oprical Mouse
C-media uss reacdphone Sot
C-media use meadphone %ot
uss audio pevice

C-Media uss Audio pevice

use audio adapter GPIO for PTT,

HID

Videyw1d_ 41 3capTd_ 201081 _00#982 < 988 508080000# (4d1e55b2-F 167 -11 P -B8Ch-001111000030) ' kbd

(prt)

fideyvid_41)c8pid 201081 _018caT01#4814darcObSOS0000® {21 e55b2-FL0F -11<F-B0ch-001111000030)
hidevid 413c8pid 201041 _018col02¢9814daf cODLOSOO0L# (4dle b2 -F10F -11cF -88cb-001111000030}
hidevid 413ckpid_20108m1_012c01039814daf cObEOSO002 {4dles5b2 -F10F -11cf - 58ch 001111000030}
hidevid_046LEp1d_4d150881d6abcEa020000# (40105502 F16f <11cf -ESchb.001111000030)

hidevid_0dacapid_000cter! _03428¢70117 040800008 {4d105502-F16f -11cf-E8cb-00L111000030)
hidevid_0decipld_000ckar! _0348820d4c 37818000004 (40505502 -FL6F 11 -88ch-D01121000030%
M devid_1bITEp T d_20088a1 _03#8821 57891 18OM0CO0 (4105502 -F16F -1 1 CF-SRch-001131000030)

Mdevid_0ddcEpid_000BLe 1 _030E439d 155540800000 {241 5502-T16M-11cM-85cb-002111000030}

The good news is that the paths are still there after a reboot.

§$ cmi08
vip
Odic
413c
Odic
413c
1b3f
413c
413c
61
Odic

¥ = Ccan

P10
000¢
2010
0008
2010
2008
2010
2050
4d15
000c

vroduct

C-Media UsE meadphone Set
pell uss Keyboard
C-Media USS apdio Device
Dell usE Keyboard

Us8 Audio Device

Dell use Keyboard

Dell use Keyboard

uss optical Mouse
C-media USE Heacphone Set

use Aaudio adapter wPI0 for PrTT.

i dev1d_0dAcsp 1d_000cka 1 _D348426dc 378140400004 (4015502 -F167 -1 1cT -§3ch-005111000030)
V2N Aoy 141 38p 1 d_20108e | _00#04 2 2085080800004 {401 €550 - 167 - 11T -88cb-005 111000030) \kbd
N dey Td_OdBcsp Td_0008Em | _03e84 35435 5580800000 (ad1e55b2-T16M-11¢F -§8<b-001111000030]

Pnfdevid_a13c4pid 20108e1_018<0] 0199814447 COBSOSO000# (0L e55h2-F16F - 11l -88cb-001112000030)

hidevid 1b3f&pid 20088m1 030852157891 18080000¢ {4d1e5 502 -F16F-11cf -88cb-001111000030)
hidevid 413c8pid 201081 01&co) 0Ze 951 daT cObA0S0001 P {40l es 502 -F16f -11cf -28cb-001112000020}

hidevid 413c8pid 20108m1, 01&co] 0309814daf cObA0SO002# {201 e3 502 -F16F - 11cf -88cb-001111000030}

hdevid_0461apid_4d15484106abc64080000#{2d1e55b2 -F16f - 11cf -B8cb-001111000030)
hidevid_OdSc&pid_000c&eri_D3#84070137 080800004 {4d1e55b2-f16f-11cf . B2ch-001111000030)

~ 42 ~

Verify that it is working properly by running cm108 again with the USB Audio HID path on the command
line. E.g.

>cm108 "\\?\hid#vid_0d8c&pid_0012&mi_03#8&2a5a85b6&0&0000#{4d1e55b2-f16f-11cf-
88cb-001111000030}"

0101010101010101010101010

IMPORTANT: The device path has contains characters with special meaning to the command interpreter
so it needs to be enclosed in quotation mark (") characters.

The alternating 0 and 1 are displayed as the PTT control is turned off and on. If you are using an
interface with a PTT LED indicator, it should be alternating between off and on.

If you have a single USB audio adapter, you should be able to simply use this short form in the direwolf
configuration file:

PTT cmle8

However, if you are using multiple devices, you will need to explicitly specify the
device path like this:

PTT cm1@8 "\\?\hid#vid_0d8c&pid_00ec&mi_03#88&2edc37818&080000#{4d1le55b2-f16f-
11cf-88cb-001111000030}"

~ 43 ~

8 Software Defined Radio
When using software defined radios (SDR), the audio will be coming from another application rather

than a “soundcard.”

See Radio-Interface-Guide ,pdf for information about:

8.1 gqrx

Ggrx (2.3 and later) has the ability to send streaming audio through a UDP socket to another application
for further processing. As explained in http://ggrx.dk/doc/streaming-audio-over-udp, select the

Network tab of the audio settings window. Enter the host name or address where Dire Wolf will be
running. Use “localhost” if both are on the same computer. Pick some unused UDP port which will also
be used in the direwolf configuration. Here we use the same UDP port number as in the gqrx
documentation example.

Use the following Dire Wolf configuration file options:
ADEVICE udp:7355 default
ARATE 48000

ACHANNELS 1

This means that Dire Wolf will obtain audio from a UDP stream for receiving. If you transmit on that
channel, audio will go to the ALSA device named “default.”

Alternatively, you can override the configuration file settings with command line options like this:

direwolf -n 1 -r 48000 -b 16 udp:7355

e “-n1” sets number of audio channels to 1.
e “r48000” means audio sample rate of 48000 per second.
e “-b 16” means 16 bits per sample, signed, little endian.

Note that these command line options apply only to the first audio device (ADEVICEQ) and the first
channel (CHANNEL 0).

~ 44 ~

http://gqrx.dk/doc/streaming-audio-over-udp

8.2 rtl_fm

Other SDR applications might produce audio on stdout so it is convenient to pipe into the next
application. In this example, the final “-“ means read from stdin.

rtl fm -f 144.39M -0 4 - | direwolf -n 1 -r 24000 -b 16 -

Instead of command line options, you could do the same thing in the configuration file like this:
ADEVICEO stdin default

ARATE 24000
What do the rtl_fm options mean?
-f 144.39M Pretty obvious. You can guess. Frequency accuracy is notoriously bad
for the cheapest models. The —p option can be used for calibration.
Models
-04 By trial and error this seemed to work better.
- Send audio to stdout where we pipe it to another application.

This is the default so it is probably redundant.

Note that the default is 24000 samples per second out. This is adequate for 1200 baud but you

would want it to be higher for 9600 baud.

You might be able to get better results by playing with the sampling and filtering options.

See http://kmkeen.com/rtl-demod-guide/index.html for rtl_fm documentation.

What do the direwolf options mean?
-n1l Single audio channel (mono). This the default but will override
Any stereo option in the configuration file.

-r 24000 Audio sample rate. Must match the source.

~ 45 ~

http://kmkeen.com/rtl-demod-guide/index.html

-b 16 Bits per audio sample. This is the default so it is really redundant.

- Take audio from stdin. In this case it is piped from rtl_fm.

Here is another possible variation you might want to try. In one window, start up Dire Wolf listening to
a UDP port. Note that rtl_fm has a default sample rate of 24000.

direwolf -n 1 -r 24000 -b 16 udp:7355

In a different window, run rtl_fm and use the netcat utility to send the audio by UDP.

rtl fm -f 144.39M -0 4 - | nc -u localhost 7355

Note that the SDR and Dire Wolf can be running on different computers, even different operating
systems. You could use the command above on Linux but change localhost to the address of a Windows
machine where Dire Wolf is running.

If you see some warning about audio input level being too high, don't worry about in this case.

It's only a potential problem when using the analog input of a sound card. If the analog audio input is
too large, it can exceed the range of the A/D converter, resulting in clipping, distortion of the signal, and
less reliable demodulation. The warning level is overly cautious. The input level can go much higher
before it reaches the A/D range limit.

In this case, where 16 bit digital audio is going from one application to another, there is no danger of
overflowing the signal range.

| found this to work well for 9600 baud.

rtl fm -p 62 -f 144.99M -o 4 -s 48000 | direwolf -c sdr.conf -r 48000 -B 9600 -

The default 24000 sample rate is too low for reliable 9600 baud operation so we want to increase it to
48000 or maybe even a little higher. Obviously, both applications need to use the same audio sample
rate. Results seemed to be better with the “-o0 4” option but it wasn’t a very scientific test.

| would like to hear from anyone who has done experimentation with different sampling options and
came up with something that works better.

The companion document, Raspberry-Pi-SDR-1Gate.pdf , goes into more detail about the frequency
error for the cheaper devices and how to deal with it. Most of the information applies to other Linux
systems, not just the Raspberry Pi.

~ 46 ~

8.3 SDR#

The SDR# website doesn’t seem to have any documentation on how to use the software. They just
point to a Google search:

http://www.google.com/search?q=sdrsharp+tutorial

Here are some other good locations to help you get started.

http://www.atouk.com/SDRSharpQuickStart.html

http://www.gsl.net/yo4tnv/docs/SDRSharp.pdf

https://learn.adafruit.com/getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio

Essential settings:

Frequency: Set to local APRS frequency. Clicking on the upper half of a digit increases it. On
the lower half decreases it.

Source: RTL-SDR (or other for your hardware)

Radio: NFM. This defaults to a bandwidth of 8 kHz which would be appropriate for
commercial / public service analog voice with 2.5 kHz deviation. It did work
with a very strong signal, but this is probably too narrow for best results. We
are dealing with a peak deviation up to + 5 kHz and the cheap devices are not
real accurate about the frequency. You might want to start off with 15,000
here but I'm no expert. You definitely don’t want WFM, which is for broadcast
FM. This has a 180 kHz bandwidth for 200 kHz channel spacing.

Audio: Note that the sample rate is 48,000 per second. It is grayed out and we can’t
change it. This will be important later. Set output to speakers for now. We will
change this later.

Start button: In the upper left is a triangle pointing to the right. Click to start.

First verify that you can hear the desired signal through the speaker. Check the frequency calibration
against a signal of known frequency. My cheap RTL-SDR dongle was off by 64 ppm which is more than 9
kHz on the 2 meter band.

When you receive an APRS signal, it should look something like this:

~ 47 ~

http://www.google.com/search?q=sdrsharp+tutorial
http://www.atouk.com/SDRSharpQuickStart.html
http://www.qsl.net/yo4tnv/docs/SDRSharp.pdf
https://learn.adafruit.com/getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio

144.390.000 »

|
Wl 3 d I\\ﬁ ‘i
v 'h‘ﬂ,}wu“\ﬂ"lﬁ ?)\1 /J\, A '{«.‘L“h W V iAW

144 & A4 5500

\ b
" ﬁ’“ »,-h“ A‘Julr“lrﬁ- ‘I\-.-'.-v,.,"l 'kn‘.hr..u\r" ‘P.J v

The side lobes seem to be an artifact from the SDR receiver, not a dirty transmitter. The same thing is
seen with a much different transmitter.

How can we send the received audio to another application instead of the speaker? You could install a
second sound card and connect the ”line out” from the first to the “line in” of the second. There is

another way. Install a “virtual audio cable” which is a pair of imaginary audio devices connected to each
other without any hardware in the middle.

Install VB-CABLE Driver from https://www.vb-audio.com/Cable/index.htm and reboot.

Nothing shows up under the Programs menu so don’t worry when you don’t see anything new there.

If SDR# is currently receiving, you will need to click the pause button
& SDR# v1.0.0.1361 - IQ Imbalance: Gai

i ﬁ before changing configuration.

Instead of using the default output, select the new “CABLE Input (VB-Audio Virtual C” instead.

~ 48 ~

https://www.vb-audio.com/Cable/index.htm

Samplerate |48000 sample/sec
Input [MME] Microsoft Soun ~ |
Output i Soun ¥

[MME] Microsoft Sound Mapper - Output
[MME] Speakers (Realtek High Definiti
MME] Speakers (Bluetooth SCO Audio
ME] CABLE Input (VB-Audio Virtual C
[MME] Realtek Diaital Output{Optical)
[MME] Speakers (Bluetooth AV Audio)

IMMET Razbals Niadal Midrod (Razbals

Latency (ms)
[] Unity Gain

Let’s test what we have so far. In the Task Bar notification area (usually bottom right corner) right click
on the speaker icon and pick Recording Devices from the pop up menu.

oS B D)

You should see CABLE Output and the level indicator on the right should show some activity. Select it

and click the Properties button.

7 CABLE Output
VEB-Audio Virtual Cable
N/ Ready

Pick the Listen tab.

~ 49 ~

‘%% CABLE Qutput Properties |i|

General | Listen |Le'u'els | Advanced

You can listen to a portable music player or other device through
this CABLE Cutput jack.

@ = g

[Listen to this device

Playback through this device:
[Default Playback Device hd

Power Management

@ Continue running when on battery power

() Disable automatically to save power

Ok] [Cancel Apply

Check the “Listen to this device” box and Apply. You should hear audio from SDR# through the
speaker. Leave it on for now during the testing. You might want to turn it off again after it is all

working.

If you look at the CABLE device Advanced properties,

@ CABLE Input Properties | J

Advanced

Default Format

Select the sample rate and bit depth to be used when running
in shared mode,

16 bit, 44100 Hz (CD Quality) v] [P Test]

~ 50 ~

you will probably find that it says 44100 Hz sample rate. We are using 48000 but this doesn’t seem to
cause a problem. | don’t know if it is performing rate conversions or just pushing the bytes through and
not caring.

| found the mismatch to be disturbing and changed it to different values for sample rate, bits per
sample, and number of channels. It didn’t seem to make any difference. Based on the evidence, this
setting seems to be ignored and the bytes just get pushed through. It wouldn’t hurt to set it to this just
so there is no question:

1 channel, 16 bit, 48000 Hz (DVD Quality)

It is important that the applications producing and consuming the audio stream agree. The delivery
service doesn’t seem to care.

Put this near the top of your direwolf.conf file and remove any others that would conflict with them.
ADEVICE CABLE O

ARATE 48000

When you start up Dire Wolf, you should see something like this:

Reading config file direwolf.conf

Available audio input devices for receive (*=selected):
0: Microphone (Realtek High Defini
1: Microphone (Bluetooth SCO Audio
2: Microphone (Bluetooth AV Audio)

* 3: CABLE Output (VB-Audio Virtual (channel 0)
Available audio output devices for transmit (*=selected):
* 0: Speakers (Realtek High Definiti (channel 0)
1: Speakers (Bluetooth SCO Audio)
2: CABLE Input (VB-Audio Virtual C
3: Realtek Digital Output (Optical)
4: Speakers (Bluetooth AV Audio)

5: Realtek Digital Output (Realtek
Channel 0: 1200 baud, AFSK 1200 & 2200 Hz, E+, 48000 sample rate.
Note: PTT not configured for channel 0. (Ignore this if using VOX.)

The lines of interest have been highlighted in red.

e The audio input is from the CABLE output device.
e The sample rate matches the value seen in SDR#. < very important.

You should now be able to decode the packets you hear.

~51 ~

8.4 Gnu Radio - multiple simultaneous channels

Here is a great tip from the forum, posted by N6BA. Thanks, Jeff!!!

https://groups.io/g/direwolf/message/3513

This is a GnuRadio flow graph that listens on 3 frequencies from a single USB attached SDR
dongle with the output audio sent over UDP. GRC file attached, which you’ll open in gnuradio-
companion. You can then subsequently have it generate the python script (sdr_receiver.py)
which can then be run from the command line. You’ll need to setup direwolf.conf as below to
listen on the three UDP ports.

For this example, the center frequency is 145MHz with the sample rate (for the dongle) set to
~2MHz. This will let one listen/tune to frequencies anywhere between 144MHz and 146MHz.

[rar— Ve || ae daratie Valak | | Veteaie [[et || vt Vatatie
- o, smeivey 10w e | | g U0 o | | D et st e | |10 gew O san (R T Y | R R T ev——
Tils: s wcore Vatow 20w | | Vi Vibow ann Vabee 2 Veee o Webee W AN | Vb | Wt o
2 < 1s - . L . L JU

Gonaius Opbans o liid
om Optwma: o b Compint

Paramater

| Oy
| Vi 30 on
| Tppe e
Mn—.n\lw | T - | ULe N |
—.‘m;. Pk ot 04 e 'ol?un . | st ¥ bdbnan 12100 5
| Tapw bowpwns Ser 0 .._’lu-—-m-n- .B__“‘u‘ 2 || Ovinaten Fert: 1A
J Cartnr 7 mepmony 410n | Yo 5 | Paylont Soe | 47N
s Gt 5 1 L‘“’“m “ S vk N1 a0 BOF | Tas
s J
D rvemw wve b
Yaen |
y Pacavum
samacom Seurae ;:’-'.“:“w
Dvde Mgerwrts 9.0 |
Sanpe R (mpa). 20000 | iassian
TN Prwpney s A
:: ;-‘u Torr. ppenl 0 Fropamey Ky P ¥ | noew mm _ DR B
I Ll el — E ' o ot Yo bt | ey nen g i
Tape wyan e '——"ou—mm oI e s en l | Dwstmaton ot 12000
ThE: G Vs A sova -]mru‘m..- s e Payhond S 4 4t
Ol B Gain 4l Bawrgds Nate: 1008 ‘ Vs Swamhe | B N P PO T
SN ¥ Gaw I N |
TN B0 e M 2
Forwmvene
"} | Beven
Cow-pase Fine Tage | Voho: Shagemn |
10 e, St i
Gy 7 = . . . N—
:::;—‘:w 20V [———r— | --um UDP Bk
.e L Tox o
e o | —ﬂ Decmuton © sty vt L Owstiason @ Asdwoan 137044
T ——— »- o-.-u ~c -0 b.,“ e »]nn---nuv e
Window farm ‘ _] Cortes ¥ wepmrey 3 | Tow 794 4 I’ ¥ Payhond Wiow) 4T
Solac 67% Sargle b 240t | v Bwemnan 4 Sont ek PR1 a0 5080

What I’ve routinely done is to use GnuRadio (ultimately a python script) for listening to multiple
frequencies with a single SDR dongle (assuming they’re all within ~2.4MHz of each

~ 52 ~

https://groups.io/g/direwolf/message/3513

other). Then have GnuRadio output that audio over a different UDP port for each
frequency. That enables one to get away with just a single SDR stick, antenna, and Dire Wolf
instance. Then have a Dire Wolf configured something like this:

snip ==

this might be for frequency 144.390
ADEVICEO udp:12000 null

ARATE 48000

ACHANNELS 1

CHANNEL 0

MYCALL mycall

MODEM 1200

FIX_BITSO

this might be for frequency 144.340
ADEVICEL1 udp:12001 null

ARATE 48000

ACHANNELS 1

CHANNEL 2

MYCALL mycall

MODEM 1200

FIX_BITSO

this might be for frequency 145.825
ADEVICE2 udp:12002 null

ARATE 48000

ACHANNELS 1

CHANNEL 4

MYCALL mycall

MODEM 1200

FIX_BITSO

~ 53 ~

It could make sense to run multiple SDR dongles and antennas if you need to listen on
frequencies on different bands (VHF vs UHF, etc.) or are too far apart, MHz-wise, to allow the
cheaper dongles to handle. A single GnuRadio script could still be used with multiple SDR
dongles as sources, each set to listen on whatever frequencies you’re interested in. However,
you’ll likely get to a point that you’ll be asking Dire Wolf to handle more audio channels (aka
UDP ports) than it can accommodate without recompiling. In that case you’ll need to modify the
direwolf.h file and up the number for MAX_ADEVS and recompile:

Default is 3 within direwolf.h:

#define MAX_ADEVS 3

Cheers,

-Jeff

N6BA

~ 54 ~

8.5 SDR Troubleshooting

If you can hear packets but they are not being decoded, try adding “-a 10” to the command line. This
will print out the audio sample rate and level each 10 seconds. In this example, we see that audio is
being received. However, | “accidentally” forgot to set the audio sample rate in the Dire Wolf
configuration file so it defaults to 44100. The decoder is expecting 44.1k samples per second, but the
actual rate is 48k so the decoding will fail.

Reading config file sdrsharp.conf

Available audio input devices for receive (*=selected):
0: Microphone (Realtek High Defini
1: Microphone (Bluetooth SCO Audio
2: Microphone (Bluetooth AV Audio)

* 3: CABLE Output (VB-Audio Virtual (channel 0)
Available audio output devices for transmit (*=selected):
* 0: Speakers (Realtek High Definiti (channel 0)
1: Speakers (Bluetooth SCO Audio)
2: CABLE Input (VB-Audio Virtual C
3: Realtek Digital Output (Optical)
4: Speakers (Bluetooth AV Audio)

5: Realtek Digital Output (Realtek
Channel 0: 1200 baud, AFSK 1200 & 2200 Hz, E+, 44100 sample rate.
Note: PTT not configured for channel 0. (Ignore this if using VOX.)
Ready to accept AGW client application 0 on port 8000
Ready to accept KISS client application on port 8001
ADEVICEO: Sample rate approx. 48.0 k, 0 errors, receive audio level CHO 61
ADEVICEO: Sample rate approx. 47.9 k, 0 errors, receive audio level CHO 63
ADEVICEO: Sample rate approx. 48.0 k, 0 errors, receive audio level CHO 62

ADEVICEO: Sample rate approx. 48.1 k, 0 errors, receive audio level CHO 52

ADEVICEQO: Sample rate approx. 47.9 k, 0 errors, receive audio level CHO 55

The reported sample rate will vary a little, especially for short collection intervals. This is because the
audio samples are transferred in large blocks for efficiency rather than a steady stream of one at a time.
The last number on the line is the audio level. It should be somewhere in the range of 10 to 100 when
hearing static.

~ 55 ~

9 Troubleshooting

9.1 General

The first thing you want to do is look at what direwolf says when it starts up.

The optional features included are listed near the beginning. Example:

Includes optional support for: gpsd hamlib cml08-ptt

If you want to use hamlib, and it is not listed there, you will need to install hamlib then rebuild from
source.

If you want to use a USB audio adapter, with built in PTT control, the “cm108-ptt” optional feature must
appear here.

Next we have information about how the modems and PTT are configured. Linux example:

Windows example:

Available audio input devices for receive (*=selected):
0: Microphone (2- C-Media USB Head
Available audio output devices for transmit (*=selected):
0: Speakers (Realtek High Definiti
1: DELL U2410-1 (NVIDIA High Defin
2: Speakers (2- C-Media USB Headph
3: Realtek Digital Output (Realtek
Channel 0: 1200 baud, AFSK 1200 & 2200 Hz, A+, 44100 sample rate.
Note: PTT not configured for channel 0. (Ignore this if using VOX.)

“uxn

In this case, “ADEVICE” was not specified, in the configuration file, so there is no indicating the

selected device. The first one, in each group is taken as the default. What you probably want is:
ADEVICE USB

1200 bps is the XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXX

If not what you were expecting, review the configuration file settings. Check out:

e The wiki https://github.com/wb2osz/direwolf/wiki

~ 56 ~

https://github.com/wb2osz/direwolf/wiki

e Discussion forum https://groups.io/g/direwolf

You might find your answer there. If not, ask the group for help. Your question, and any answers will
help others in the future. Be sure to include a good description any relevant details.

Do not use the github issues section to ask for help. It is for reporting software defects and making
enhancement requests.

9.2 Notreceiving anything

Check to see if received audio is getting in at an appropriate level.

Elaborate. Not muted.

9.3 Transmitter turns on but no one receives my signal

Listen with another receiver. Does your signal sound like the others? Adjust the transmit audio level to
be similar to others.

9.4 Transmitter says on

This is usually caused by RF, from the transmitter, getting back into the PTT circuit and it latches on.
Move the radio, and especially the antenna, farther away from the computer.
Put ferrite chokes on the cable to stop the RF from getting back to the computer.

Some people like to use audio transformers to isolate the radio from the computer. An optoisolator is
used for PTT to break up the ground loop.

9.5 System crashes when transmitting

This is a more severe case of the RF getting into your computer.

~57 ~

https://groups.io/g/direwolf

9.6 “aplay -1" complains, “no soundcards found...”

| had a situation where user “root” could see the devices but an ordinary user could not. The solution
was to add the user name to the “audio” group like this.

sudo addgroup john audio

This will not take effect immediately. Log out and log in again.

9.7 Permission problem with USB Audio Adapter GPIO

Normally, all of /dev/hidraw* are accessible only by root.

S 1s -1 /dev/hidraw*

Crw——-—-——-— 1 root root 247, 0 Sep 24 09:40 /dev/hidraw0
Crw———=—=——— 1 root root 247, 1 Sep 24 09:40 /dev/hidrawl
Crw———=—=——— 1 root root 247, 2 Sep 24 09:40 /dev/hidraw?2
Crw——-—-——-— 1 root root 247, 3 Sep 24 09:50 /dev/hidraw3

Unnecessarily running applications as root is generally a bad idea because it makes it too easy to
accidentally trash your system. We need to relax the restrictions so ordinary users can use these
devices.

If all went well with installation, the /etc/udev/rules.d directory should contain a file called
99-direwolf-cmedia.rules containing:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0d8c", GROUP="audio", MODE="0660"
| used the “audio” group, mimicking the permissions on the sound side of the device.

$ 1s -1 /dev/snd/pcm*

crw-rw-—-—-—-+ 1 root audio 116, 16 Sep 24 09:40 /dev/snd/pcmCODOp
crw-rw----+ 1 root audio 116, 17 Sep 24 09:40 /dev/snd/pcmCODlp
crw-rw----+ 1 root audio 116, 56 Sep 24 09:50 /dev/snd/pcmC1DOc
crw-rw-—--+ 1 root audio 116, 48 Sep 29 18:14 /dev/snd/pcmC1DOp

Notes:
e The double equal == is a test for matching.
e The single equal =is an assignment of a value. In my limited experience, Debian type systems
can accept either = or := but Red Hat type systems recognize only the = form.

If you don’t have /etc/udev/rules.d/99-direwolf-cmedia.rules, create it as shown above and reboot.

Now we observe that the /dev/hidraw*, corresponding to the USB-Audio device now has permissions
that allow us to access it.

$ 1s -1 /dev/hidraw*

~ 58 ~

19:24 /dev/hidraw0 é

crw—-rw-—--— 1 root audio 247, 0 Oct 6

Crw-—-—----—-— 1 root root 247, 1 Oct 6 19:24 /dev/hidrawl
Crw-—-—----—-— 1 root root 247, 2 Oct 6 19:24 /dev/hidraw?2
cCrw—-—----—- 1 root root 247, 3 Oct 6 19:24 /dev/hidraw3

9.8 Baofeng transmitter stays on 4 second after PTT released

Disable the STE setting. Menu item 35?7???

9.9 DINAH transmit volume mysteriously decreases by itself

The receive carrier operated squelch (COS) is connected to the volume down pin on the USB audio chip.
You need to cut the JP-3 jumper so the COS signal, from the radio, does not shut down the transmit
audio.

~ 50 ~

