
i

Networking Without Wires:
Radio Based TCP/IP

By:John Ackermann, N8UR
n8ur@tapr.org

Published by: Tucson Amateur Packet Radio Corporation

ii

Copyright © 1999 by

Tucson Amateur Packet Radio Corporation

This work is publication No. 99-2 of the TAPR Library, published by TAPR. All
rights reserved. No part of this work may be reproduced in any form except by
written permission of the publisher. All rights of translation are reserved.

Printed in the USA

Quedan reservados todos los derechos

ISBN: 0-9644707-2-1

First Edition
First Printing, 1999

TAPR Production Editor: Greg Jones, WD5IVD

Portions of this book first appeared electronically as "IntroNOS: Getting Started
with TCP/IP on Packet Radio." John Ackermann, N8UR. 1992

Tucson Amateur Packet Radio
8987-309 E. Tanque Verde Rd #337
Tucson, Arizona • 85749-9399
Office: (940) 383-0000 • Fax: (940) 566-2544
Internet: tapr@tapr.org • www.tapr.org
Non-Profit Research and Development Corporation

T
A
P
R™

Acknowledgments
Thanks to the following folks; though some of them many not know it, they made this book better.

Orv Beach, WB6WEY; Mike Bilow, N1BEE; James Dugal, N5KNX; Paul Evans, W4/G4BKI; Bdale

Garbee, N3EUA; Gary Grebus, K8LT; Gary Hauge, N4CHV; Greg Jones, WD5IVD; Brian Kantor,

WB6CYT; Phil Karn, KA9Q; Brian Lantz, KO4KS; Liam McCann, G7TVC; Fred Peerenboom, KE8TQ,

Steve Stroh, N8GNJ, Terry Dawson VK2KTJ, Tomi Manninen, OH2BNS, James Fuller, N7VMR,
Jonathan Naylor, G4KLX, Carl Makin, VK1KCM, and Barry McLarnon, VE3JF.

iii

Contents

Introduction . 1
NOS Versions . 2

Part 1: Understanding TCP/IP . 5
Chapter 1 - TCP/IP and Amateur Radio . 5

NOS and “Regular” Packet Radio . 8

Chapter 2 - What is TCP/IP ? . 9
Protocols and Services . 10
Building a Network Stack . 13

Protocol Layers . 13
Encapsulation . 15

Chapter 3 - Names and Addresses . 19
Why IP Addresses? . 19
IP Address Structure . 20
Separating Networks and Hosts . 21
IP Address Coordination . 27
IP Ports . 27
Hostnames . 28
Mapping Hostnames to IP Addresses . 32
Hardware Addresses . 35

Chapter 4 - Routing . 37
Subnets, LANs, and Routing Rules . 38
ARP: Mapping IP Addresses to Hardware Addresses 45
Tricks with ARP . 49
A Routing Example . 51

Chapter 5 - Installing NOS: The Beginning . 55
Obtaining NOS . 55
Do I Need to be a Programmer to Configure NOS? 57
Files and Directories . 58
An Introduction to AUTOEXEC.NOS . 60

Global versus Per-Interface Commands . 61
Command Structure . 62
NOS Callsigns . 63

A Basic AUTOEXEC.NOS File . 65
Fast Relief for Headache Sufferers . 68

iv

Part 2: Installing and Configuring NOS . 69
Chapter 6 - Installing NOS: Hardware . 69

Some TNC Issues . 72
Setting TNC Parameters . 74
NOS and Other Hardware . 76

The Packet Driver . 76
The Ottawa PI Card . 78
The ifconfig Command . 79

Chapter 7 - Installing NOS: The Rest of the Story . 81
Storing Name/Address Matches in DOMAIN.TXT 81
Security, Permissions, and FTPUSERS . 83
Finger – an Information Server . 84
The “AT” Command . 85
Memory Matters . 86
NOS Versions: Build or Buy? . 88
Compiling NOS under DOS . 90
NOS under Linux . 92

Chapter 8 - Some Boring but Necessary Technical Stuff 93
Packet Sizes and Windows . 94
Timers . 97
Datagrams vs. Virtual Circuits . 99
Before Leaving the Boring Stuff... . 100

Part 3: Using NOS . 101
Chapter 9 - Using NOS . 101

KISS Mode . 101
The NOS Display . 104

Sessions . 104
Managing Sessions . 105
A Graceful Exit . 106
Help . 107
File Commands . 108

v

Chapter 10 - NOS Functions . 109
Using NOS for AX.25 Contacts . 109
Telnet . 110

Using Telnet to Connect to a UNIX Host 111
File Transfers with FTP . 114
PING . 117
Hop . 117
Finger . 118
Monitoring The Channel . 118

Chapter 11 - Electronic Mail . 119
BM Basics . 120
The Alias File . 122
Using BM . 124
Moving Mail With NOS . 126
Using POP to Process Mail . 127

Part 4: The Fancy Stuff . 129
Chapter 12 - Using NET/ROM . 129

Configuring NET/ROM . 130
Some NET/ROM Details . 132
More on Getting Along . 134
TheNET X1 Nodes . 134

Chapter 13 - Using NOS as a PBBS . 135
NOS PBBS Hardware Requirements . 136
Configuring the BBS . 138
AUTOEXEC.NOS . 139
Managing the Mailbox with the REWRITE and AREAS Files 142

Areas . 142
The Role of the Rewrite File . 143
Wildcards, Variables, and Recursion . 144
Designing a REWRITE File . 146

Moving Messages with FORWARD.BBS . 148
Cleaning Up With the EXPIRE.DAT File . 149
Revisiting the FTPUSERS File . 150
Other PBBS Configuration Files . 150

vi

Chapter 14 - An Introduction to Unix TCP/IP . 151

Chapter 15 - A Linux Survival Guide . 153

Chapter 16 - NOS and Unix . 157
Configuring TNOS under Linux . 158
Installing the TNOS Package . 158
Configuration Files . 159
Starting (and Restarting) TNOS Automatically . 159
Connecting TNOS to the Linux TCP/IP Subsystem 162
Configuring the Linux Side . 163
Proxy Arp Revisited . 165
Configuring TNOS . 167
Summary . 168

Chapter 17 - Using Linux Native AX.25 . 169
Configuring Linux AX.25 . 170

A Note About Versions . 171
Configuring and Building the Kernel . 171
Applying AX.25 Updates to the Kernel Source 172
Installing the AX.25 utilities and user programs 175

Configuring Linux AX.25 . 176
Callsign Confusion . 177
The AXPORTS File . 180
The NRPORTS and NRBROADCAST Files 180
Other Parameter Setting . 182

Configuring TCP/IP over AX.25 . 186
Automating the AX.25 Configuration . 186
Other Linux AX.25 Capabilities . 188

Configuring ax25d . 189
Configuring LinuxNode . 190

vii

Chapter 18 - Internet Gateways . 195
Why Can’t We Directly Connect to the ‘Net? . 195
How Gateways Work . 196
Gateway Platforms . 198
Gateway Types: AX.25 and IP . 199
Configuration Basics . 201
NOS IP/IP Configuration . 201

Security Basics . 202
NOS AX/IP Configuration . 204
NOS NET/ROM Gateway Configuration 205
Linux IP/IP Configuration . 206
Linux AX/IP Configuration . 207
Linux NET/ROM Gateway Configuration 209

Chapter 19 - The Converse Bridge . 211
Configuring Convers — NOS . 212
Using Convers . 213

Convers for Linux . 214

Chapter 20 - Conclusion . 219

Appendix A Resources for NOS and TCP/IP . 221
Appendix B AMPRNet Coordinators . 222
Appendix C Sample AUTOEXEC.NOS . 227
Appendix D NET/ROM.NOS . 229
Appendix E BBS.NOS . 231
Appendix F DOMAIN.TXT . 233
Appendix G FTPUSERS . 235
Appendix H REWRITE . 237
Appendix I FORWARD.BBS . 239
Appendix J BM.RC . 241
Appendix K Configuring Linux to TNOS . 243

viii

Figure 1.1 - Host running multiple applications . 7
Figure 1-2 - Internetworking using a gateway. . 8

Figure 2-1 - Some TCP/IP Protocols (described in Chapter 2) . 10
Figure 2-2 - Open Systems Interconnect (OSI) Layers . 13
Figure 2-3 - The frame . 15
Figure 2-4 - Encapsulation . 16
Figure 2-5 - Encapsulation Example . 17
Figure 2-6 - Encapsulation - IP to AX.25 to IP - Why Bother? . 18

Figure 3-1 - IP address . 21
Figure 3-2 - Network and Host Parts of an IP address . 22
Figure 3-3 - Subnetted Addresses . 23
Table 3-4 - Amprnet subnets . 24
Figure 3-5 - Dayton Net Subnet example . 25
Figure 3-6 - Example network with subnets . 26
Figure 3-7 - "Multi-homed" host. . 26
Figure 3-8 - Internet E-Mail Address and FQDN . 30
Figure 3-9 - Domains and Networks aren't the same thing! . 31
Figure 3-10 - DNS lookup . 32
Figure 3-11 - Sample Domain.txt entries . 33
Figure 3-12 - Importance of the trailing dots . 35

Figure 4-1 - Netmasks . 40
Figure 4-2 - Route matching . 41
Figure 4-3 - How a 25 bit netmask works . 42
Figure 4-4 - Routing . 43
Figure 4-5 - Example subnet. . 44
Figure 4-6 - ARP . 47
Figure 4-7 - ARP example . 48
Figure 4-8 - Manual ARP . 50
Figure 4-9 - Proxy ARP . 50
Figure 4-10 - Our Network . 53

Figure 8-1 - Example of overhead in datagrams . 9 4
Figure 8-2 - Example of packet fragmentation . 9 5

ix

TAPR on the Internet
World-Wide-Web!

TAPR's Home Page can be reached at: http://www.tapr.org

FTP
The TAPR Software Library is available via anonymous FTP. You can access the library by ftp to

'ftp.tapr.org'. Login in as 'anonymous', with a password of 'your_account@internet_address'. In addition,
‘ftp.hereford.ampr.org’ also has the library available.

TAPR via Listserv
TAPR can also be reached via its automated information server. Anyone can request information on

TAPR, products, newsletters, and lots of other files, by sending an e-mail message to
listserv@tapr.org with the subject line "Request" and the following text in the body of the
message:

help (for a brief set of instructions)
index -all (for a list of all file by topic area)
get tapr taprinfo.txt (or info on TAPR)

In the above message example, "help" retrieves a brief set of instructions for info, "index -
all" retrieves a list of available files by topic and "taprinfo.txt" retrieves a text file containing
information on TAPR and what TAPR is all about. If you want to retrieve several text files with one
message, use a separate line for each "get filename" request.

TAPR Special Interest Groups
TAPR maintains several SIGs in various areas of interest (Spread Spectrum, DSP, HF Digital, APRS,

etc). Send an e-mail message to listserv@tapr.org with the subject line "Request" and the
following text in the body of the message:

lists (for list of mail groups on TAPR.ORG)

information listname (where listname is the name of the mail group)

When you are ready to subscribe, send e-mail to listserv@tapr.org with the following
command in the message text:

subscribe list YourFirstName YourLastName Callsign

The TAPR web page also provides an interface for subscribing to mail lists.

x

Foreword

Digital transmissions are rapidly supplanting analog transmissions in both amateur and commercial
radio communications. Digital radio transmissions offer many inherent advantages. Digital
techniques allow virtually noise-free transmission of data, messages, control commands, sounds
and images to be achieved. Digital transmissions allow information to flow from multiple sources
to multiple destinations on the same radio channel in an organized and efficient way. Information
is communicated in a form that is easy to store and access. And when needed, information security
can be readily added to a digital transmission.

Amateur Radio can be proud of its pioneering contributions to digital radio communications
techniques, and especially the Tucson Amateur Packet Radio Corporation (TAPR), which developed
the first widely used terminal node controllers for amateur packet radio.

I believe one of the most important contributions TAPR has made to digital radio communications
recently is the publishing of this book. Tom McDermott, who has an extensive professional
background in digital telecommunications, covers the topic of digital radio transmissions in a
remarkably lucid and accessible way. Tom has held the complex mathematics typically found in
most books on this subject to a minimum. Instead, Tom uses an easy to understand graphical
approach to explain digital communications concepts. Tom has also included a collection of Excel™
spreadsheets with this book that allows the reader to explore a number of digital communications
principles.

Amateur radio enthusiasts, engineering students and radio communications professionals will
find this book both an excellent introduction to the digital radio communications and a useful day-
to-day reference.

Frank H. Perkins, Jr. WB5IPM
TAPR/AMSAT DSP-93 Development Team Member

Excel™ is a trademark of Microsoft Corporation.

1

This book describes how ham radio operators can harness the power of the world’s
most popular networking protocol, TCP/IP, to build better — and more useful — packet
radio networks

Networking Without Wires is an introduction to TCP/IP operation over ham radio.
It’s intended to help hams with some experience in packet radio get started with NOS—
the TCP/IP software written by Phil Karn, KA9Q, and others. It is not intended to take
the place of an in-depth NOS reference manual, but rather to provide an understanding
of what TCP/IP is, and how hams can use it to improve our packet radio operations.
Additionally, in the couple of years it’s become practical to use tools other than NOS to
put TCP/IP on the air, and I will talk about those options as well. In particular, I'll
describe how to use the built-in AX.25 capabilities of the Linux operating system to put
the full Linux TCP/IP suite on the air.

I had three goals in writing this book, and its parts reflect them. Part 1 describes how
TCP/IP works generally, and concentrates on IP addressing and routing in particular
because these two areas are the meat of the TCP/IP scheme. Parts 2 and 3 show how to
get NOS running on your computer—how to configure and use its basic features,
including the electronic mail subsystem. Finally, Part 4 describes some of the more
advanced features of NOS and provides basic information on how to set up NOS PBBS
systems, NET/ROM nodes, “Convers” servers, and Internet gateways. It also provides
details about configuring and using Linux for amateur radio TCP/IP. Although I’ve
tried to address the common questions that come up when configuring and running
NOS, much has necessarily been left unsaid. Consider this book to be a starting point,
not the end of the road.

Introduction

2

It will be very helpful if you have the NOS reference manual handy when you read
this book, and especially when you start configuring and using NOS. There are some
subtle variations in command syntax from one version of the program to another, but
with the reference manual and a bit of trial and error you’ll have things working in no
time.

NOS Versions

Although Phil Karn is still doing development on NOS, several others have taken his
work and added to it. NOS is a growing and changing creature with several quite
different versions, some of which are being updated rapidly. I'll use the term "xNOS" to
refer generically to the family of NOS derivatives. I can’t tell you precisely where to
find the latest and greatest version, but Appendix A includes a partial list of places you
can find the various flavors of NOS and supporting programs. It also lists a number of
NOS resources, such as mailing lists and users groups.

The NOS variant I use on my home PC, and which is the basis for most of the examples
in this book, is called JNOS. The version used for the examples in this book is 1.11M,
which was current in January, 1998. JNOS was developed by Johan Reinalda, WG7J1-1

from the original work done by KA9Q and PA0GRI’s further development in the early
1990s, and it’s probably the most popular variant of NOS in use today. The biggest
thing that sets JNOS apart from earlier NOS versions is its full-blown packet BBS (PBBS)
functionality. It also supports a sophisticated “converse” bridge that provides a
conferencing or “chat” facility between users worldwide via both radio and Internet
links.

1-1 Johan has moved to Japan and is no longer actively working on JNOS. James Dugal, N5KNX,
has taken over development and he periodically makes new releases available.

3

Introduction

Another version of NOS that is gaining in popularity is TNOS, developed and
maintained by Brian Lantz, KO4KS. TNOS is based on JNOS, but adds additional
features, including much more sophisticated BBS functionality. One of the interesting
things about TNOS is that although it will run under MS-DOS, it is primarily intended
for use under UNIX operating systems like Linux, a freeware UNIX clone. Running
TNOS under UNIX eliminates the memory bottleneck that is the biggest problem with
packing lots of functionality into a DOS-based NOS. The PBBS that I help run has
switched to the TNOS/Linux combination, and I use TNOS version 2.30 as the reference
for the discussion of PBBS operation in Chapter 18. For the most part, JNOS and TNOS
use compatible commands; where they differ I’ll try point that out.

A last note before plunging in—I said it before, and I’ll say it again: this book barely
scratches the surface of NOS and TCP/IP. Nearly every command described here has
options or parameters that I may not mention. My goal is to give you a feel for what
TCP/IP does, and to get you on the air with NOS. To get beyond the novice stage you
need to look at the reference manual and experiment with the software. You’ll find a
local TCP/IP Elmer to be an invaluable asset; this stuff is much more fun when there’s
someone else to talk to, and learn with.

4

5

TCP/IP is not a program, or even a single concept. It’s a set of communication protocols

that have become almost universal standards in the computer networking world. A
“protocol” is simply a standard that describes the way two things — in this case,
computer systems — communicate with one another. A protocol describes things like
the data format, the way systems identify themselves, the messages they send, and how
they respond to those messages.

Some of the TCP/IP protocols are quite complex, while others are simple. Together,
they specify how different types of computers can exchange information with one another
over different kinds of networks. That’s one of the reasons for TCP/IP’s power and
popularity: it allows internetworking across the whole spectrum of hardware and
software environments. TCP/IP provides both system-level protocols — the standards
that let computers actually talk to one another — and user applications that allow for
file downloading, mail transfer, remote computer login, and other useful services.

There are lots of TCP/IP software implementations; it runs on nearly every kind of
computer available, from IBM mainframes and UNIX systems to PCs, Macs, Amigas,
and Ataris. Most PC operating systems, like Windows NT, Windows 95/98, and OS/2

Chapter

1
TCP/IP and Amateur Radio

Part 1: Understanding TCP/IP

6 Chapter 1

 PART 1 – Understanding TCP/IP

Warp Connect, include built-in TCP/IP support (though that support is missing some
important elements for ham radio work). For hams interested in TCP/IP over packet
radio, there’s one program in particular that’s important.

NOS (short for Network Operating System) is special because Phil Karn, KA9Q, wrote
it specifically for ham radio use. Apart from duplicating all the functionality of a complete
networking system in a single PC program, it includes the special features necessary to
make TCP/IP work well over radio channels that are slower and less reliable than an
Ethernet. Since Phil first started coding NET—the predecessor of NOS—in 1985, his
program has grown tremendously, been ported to other computer types and operating
systems, and expanded into environments other than amateur packet radio. KA9Q has
always made the source code to NOS available, and as a result many other hams have
built upon his work. More than a decade later, one of the many xNOS variants remains
the most popular choice if you want to use TCP/IP as part of your ham radio station.

If you’ve looked at the size of the NOS documentation—or of this book—you’re
probably asking yourself why it’s worth the effort to master this fairly complex stuff.
NOS has many features that improve on regular packet radio. It has powerful routing
tools that help us build wide-area packet radio networks. It has much more sophisticated
electronic mail capabilities than our present PBBS systems. It has a well-proven file
transfer protocol. It supports multiple simultaneous connections. It has transport
methods that improve the reliability and throughput of slow and congested channels.
And, it’s expandable: new features and protocols can easily be added. In fact, one of
the problems with NOS is that it can include too many features to work in the limited
memory space provided by a DOS computer.

The bottom line is that NOS provides the basis for flexible, robust, computer networking
over amateur radio.

7

TCP/IP and Amateur Radio

The TCP/IP protocol suite allows different kinds of computers to talk to one another
across different kinds of networks. The services it provides include terminal sessions,
file transfer, electronic mail, and data routing. Computers running TCP/IP (referred to
as hosts) can run some or all of these applications simultaneously; it’s possible to sit at
a PC running NOS and carry on a keyboard-to-keyboard chat with one station, while
another retrieves a file from your hard disk and your computer sends electronic mail to
a third. (Figure 1-1)

1-2 There are two other terms that are often used interchangeably with “gateway”: “router” and “switch”.
Although all three terms have precise technical meanings, they are often used without regard to those meanings.
Throughout this book, I’ll use the broad definition and use the terms gateway and switch interchangeably. I won’t
use router at all; it’s a widely used term in the real world, but not in the ham IP community.

NOS also has the ability to route transmissions to distant stations without the user
needing to know every stop along the way; all you need to do is get your data to a
gateway1-2 —an intermediate station that knows how to move it one step closer to its
destination. NOS can also use protocols that automatically discover routes, and can
adjust to changes in the network. Although the tools to do this are still under
development, they offer the promise of a network that intelligently figures out the best
route from point A to point B, and can deal with propagation and hardware problems
along the way. (Figure 1-2)

ftp telnet

new mail!

ftp
telnet
mail (smtp)
http (www)
etc

Server 1

ftp
telnet
mail (smtp)
http (www)
etc

Server 2

ftp
telnet
mail (smtp)
http (www)
etc

Server 3

Figure 1.1 - Host running multiple applications

8 Chapter 1

 PART 1 – Understanding TCP/IP

Since NOS is based on the de facto standard system for interconnecting computers, it
offers the possibility of sophisticated services far beyond anything available on regular
packet radio. For example, in some areas ham TCP/IP users can log into multi-user
UNIX computer systems and run applications as if they were directly connected to
those machines. Email can be transparently moved between the ham TCP/IP community
and the Internet. JNOS and TNOS can even act as Worldwide Web servers!

NOS and Traditional Packet Radio

All these capabilities are impressive, but you may wonder if the cost of TCP/IP is
giving up the ability to connect to the local BBS, or check DX spots from a PacketCluster.
When you run NOS, you don’t give up the ability to carry on normal packet
communications. In fact, NOS works very nicely to allow multiple AX.25 connections.
You can use it just like a terminal program to establish connections with your local
PBBS or PacketCluster, or to chat with friends who don’t run NOS (yet) — or do all
these things simultaneously (and run TCP/IP applications as well)! You can think of
NOS as a general purpose packet radio program, not as something specialized and of
limited use. It’s the only packet software you need to run.

Gateway
Swtich or Router

Network 1 Network 2

Figure 1-2 - Internetworking using a gateway.

9

Chapter

2
What is TCP/IP ?

Part 1: Understanding TCP/IP

We’ve said that TCP/IP is a set of protocols for the transfer of data across networks of
dissimilar computers. You can think of these protocols as forming two sets. One group
establishes the way two computers talk to each other at a basic level, dealing with things
like addresses and routing, and making sure that data actually gets to its destination in
the right sequence and without corruption. The other provides more directly useful
services that ride on top of the lower-level protocols.

Two of the lower-level protocols give the set its popular name: TCP (Transport Control
Protocol) is a “reliable stream service,” which is a fancy way of saying it makes sure that
all the data sent to a remote host actually gets there in the correct order; and IP (Internet
Protocol) handles the dirty details of addressing and routing data packets over a network.

Frankly, I think we’d have been better off if we’d called it “IP/TCP” instead of the
other way around, because it’s IP that does the most interesting work — it handles the
addressing and routing of packets. TCP’s job is important but much less interesting: it
makes sure that all the data sent by a higher level protocol arrives at the far end without
error and in the proper sequence. Consequently, this part of the book focuses on IP and
the other low-level protocols that help IP do its job.

10 Chapter 2

PART 1 – Understanding TCP/IP

Protocols and Services

We shouldn’t get into the nitty-gritty, though, without first describing some of the
higher-level protocols that let folks do useful things, because TCP/IP wouldn’t be of
much use if it didn’t support applications that human beings want to use. TCP and IP
alone don’t do anything that a user can interact with—they’re building blocks. It’s the
higher level protocols in the TCP/IP suite that do useful things. There are lots of these
user services, and NOS supports many of them, both as a client that uses the service,
and as a server that makes it available to other hosts. (Figure 2-1)

2-1 TCP/IP is intimately related to the UNIX world, and UNIX types favor lower-case names for
programs and protocols.

IP

UDP TCP ICMP ARP

telnet ftp http smtp

Figure 2-1 - Some TCP/IP Protocols (described in Chapter 2)

Some of these protocols – and the ones we use most on the ham network – are:

TELNET—The terminal emulation program. In “real” networks, telnet2-1 lets a user
at one host remotely access a remote host, just as if he was on a terminal directly connected
to that computer. In NOS, the telnet function usually connects you to a remote host’s
mailbox, which acts very much like a personal PBBS. The NOS telnet command also
allows you to remotely login to a host that supports that function; in some areas UNIX
computers connected to the ham TCP/IP network allow remote login and allow users
to run application programs over the air.

FTP—File Transfer Protocol. A means of transferring both ASCII (text) and binary
(program, data, or compressed) files between hosts. NOS systems can be ftp servers,
making files available to others for download, as well as ftp clients.

11

What is TCP/IP ?

SMTP—Simple Mail Transfer Protocol. A (mostly) invisible way of moving electronic
mail from one host to another. If you create a message on your computer (using the
NOS mailbox or the BM program discussed below), SMTP will automatically attempt
to transfer it to the destination computer. SMTP is a protocol that runs in the background
— unless you look for it, you won’t know that it’s there.

POP—Post Office Protocol. SMTP is neat, but it’s really designed to work with hosts
that are available full time. Most ham TCP/IP stations aren’t. POP is designed for
them; it allows incoming mail to be stored at a host that acts as a mail server; when you
come on the air, your system uses POP to ask the server to send you your mail.

PING—Packet InterNet Groper. A simple program, usually used as a diagnostic tool,
that sends a packet to a specified host using the Internet Control Message Protocol
(ICMP). If the host is reachable, it responds with another packet. PING tells you the
round trip time (RTT) — how long it took from the time your packet was sent until you
receive the acknowledgment. Ping can also send multiple packets and report back how
many of them received a response. This is a good way to test the reliability of a path.

FINGER—A way of finding out information about the users at a host. The finger
command can simply list all the users at a host, or spit out information (like the “brag
tape” of RTTY days) about a specific user.

DNS—Domain Name Service. Remembering IP addresses isn’t easy. NOS can use a
file to map hostnames to IP addresses, but that means you need to update this file
whenever hosts are added, removed, or changed on the network. Alternatively, a remote
host may agree to serve as a domain name server that NOS can query when it needs to
know the address of a host. NOS can be configured as a name server as well as a client.

12 Chapter 2

PART 1 – Understanding TCP/IP

NNTP—Network News Transport Protocol. This is a way to distribute Usenet articles
via TCP/IP. It can also be used to distribute packet BBS bulletins from a NOS PBBS
system to TCP/IP users. NOS includes an NNTP server, and a somewhat limited NNTP
client.

WWW—WorldWide Web. This is the hottest thing to hit the Internet. It’s the protocol
that supports the “web browsers” that are making folks like Netscape rich. As a practical
matter, WWW requires lots more bandwidth than a 1200 baud radio channel can offer,
but both JNOS and TNOS now provide support for the Hypertext Transfer Protocol
("HTTP") used by web servers and browsers.

13

What is TCP/IP ?

Building a Network Stack

Protocol Layers

Understanding the TCP/IP suite is much easier if you think of the protocols as being
“stacked” atop one another in several layers. Figure 2-2 shows the TCP/IP stack, and
referring to it may help the paragraphs that follow make more sense. This seven-layer
stack is formally known as the OSI (Open Systems Interconnect) model, and being able
to talk smugly about Layer 2 versus Layer 3 is a mark of the true networking geek.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Layer

1

2

3

4

5

6

7

Name of unit exchanges

Bit

Frame

Packet

Message

Message

Message

Message
Application Protocol

Presentation Protocol

Session Protocol

Transport Protocol

Communications subnet boundary

Internal subnet protocol

IMP IMP

Host A Host B
Network layer host - IMP protocol

Data link layer host - IMP protocol

Physical layer host - IMP protocol

At the bottom of the stack is the physical layer which actually communicates between
sending and receiving stations. This may be an Ethernet cable, a serial link, a radio
channel, or some other path that electrons can follow.

Figure 2-2 - Open Systems Interconnect (OSI) Layers

14 Chapter 2

PART 1 – Understanding TCP/IP

The next level is the data link layer. It contains the lowest-level framing structure,
i.e., the way the bits are put together into packets. The most common link layer protocol
used in packet radio is AX.25, an amateur-built standard based on two commercial
protocols.2-2 The first is HDLC (High-level Data Link Communication), which is usually
generated by a chip in the TNC and not by a software program. By the way, as we use
the word frame (interchangeably with packet) in this discussion, remember that a frame
has three parts: address and control information at the beginning, data in the middle,
and at the end, control information and often error checking information.

The second protocol underlying AX.25 is X.25 (“AX.25” actually stands for Amateur
X.25). HDLC is able to transmit and receive data, but all it does is wrap that data up in
frames; it doesn’t include rules for station identification, addressing, or error detection.
In the commercial world, the X.25 protocol is often used to add addressing and other
necessary pieces to HDLC to create a complete link layer protocol. In the ham network,
AX.25 does the same thing. It provides the additional data and control necessary for
two stations to connect to each other and reliably exchange data. AX.25 is technically
described as an LAPB (Link Access Protocol - Balanced) protocol, because the station
involved are peers – that's different than an unbalanced link layer protocol, where one
station is the "master" and the other is the "slave". 2-3

Next comes the network layer. IP, the network layer protocol, manages the task of
getting data from one place to another. It provides the addressing and routing
information needed to move data independently of the underlying link layer. IP frames
are encapsulated in the data part of data link layer (AX.25) frames. (This is a short
description of a very powerful protocol. I’ll be talking a lot about IP later in this book.)

Fourth up in the protocol stack is the transport layer, which ensures that data is not
corrupted and arrives in the right sequence. That’s TCP’s job—it handles retries when
packets are lost, and puts the incoming data back into the correct order. TCP frames are
encapsulated within the data part of IP frames.

2-2 Until recently, FCC regulations required that packet radio use AX.25 as the link layer protocol. That
requirement has been lifted, but nearly all ham packet activity is still based on AX.25 today.

2-3 Using AX.25 as the link layer protocol for a TCP/IP network isn’t the most efficient way to go. AX.25 has
features that IP doesn’t need or use, and those features add channel overhead that we can do without. It is also
missing some things, like error correction capabilities, that would allow us to get better performance from our RF
links. Now that the FCC requirement to use AX.25 is gone, it’s likely that someday we’ll see a new link layer
protocol specifically designed to work with TCP/IP.

15

What is TCP/IP ?

Above the transport layer ride three more slices of the stack. A single TCP/IP
implementation may be handling incoming and outgoing data for numerous services
and protocols at the same time. The session and presentation layers manage all that
data and make sure it’s handed off to the correct top-level service in the application
layer. The application layer is where the protocols that we actually see and interact
with, like ftp and telnet, live.

Encapsulation

The protocols that move data around within TCP/IP network package that data up in
frames – blocks of bits divided into fields in a precisely defined way, as shown in Figure
2-3. The part of the frame that carries the user's data is just one of the fields; other fields
contain control information used by the protocol.

You can think of a frame and its control fields as a wrapper around its "real" information
content. Although each protocol divides frames in its own way, common characteristics
of frames are:
• a way to define the beginning and the end of the frame;
• fields at the beginning of the frame that identify its type, and include other information

that's useful in processing the frame;
• a data field, which is usually but not always the largest field; and
• additional fields at the end of the frame, often containing information such as

checksums that help detect errors in transmission.

The use of defined frames for each protocol makes a layered networking model
possible. Frames for higher level protocols are encapsulated as data within lower-layer
protocol frames. Encapsulation simply means that a lower-level protocol can treat frames
of a higher protocol as nothing more than data – a string of bits whose content doesn't

Figure 2-3 - The frame

Header Data Checksum

AX.25 Header

16 Chapter 2

PART 1 – Understanding TCP/IP

have any impact on the lower protocol's operation. Figure 2-4 shows how encapsulation
works.

2-4 Why on earth would anyone want an unreliable protocol??? "Unreliable" is a relative term – what it means
here is that the protocol doesn't have an acknowledgement/retry mechanism because it relies on a higher-level
protocol to handle that. In some specialized applications, like the Network File System (NSF) protocol, this
results in better performance than TCP can provide.

Encapsulation is important because it allows each layer of the protocol stack to operate
independently of the layers above and below it. This isolation means that changes to
one protocol affect only the layers using that protocol; the other layers don’t need to
know about the change. It also allows protocol substitution. For example, we usually
talk about using TCP as the transport layer, but there’s another transport layer protocol,
UDP (Unreliable Datagram Protocol2-4), that can also ride atop the IP network layer.
Because both a UDP packet and a TCP packet appear to the IP layer as streams of bits, it
can handle either one transparently.

Encapsulation has a cost, however. By the time application protocol frames are
crammed into TCP frames, TCP frames are shoved into IP frames, and IP frames are
wrapped up in AX.25 frames, there’s lots of overhead to contend with, because each
protocol layer adds its own address and control information. That’s one of the tradeoffs
made to obtain an elegant and portable networking system. Since the developers of
TCP/IP were thinking of Ethernet, or at worst 56kB leased lines, as the physical layer of
their network, this wasn’t a problem they had to worry much about. But in the ham
world, where we’re trying to run TCP/IP over 1200 baud radio channels, this overhead
is important: every packet of data sent via TCP/IP over AX.25 carries with it 40 bytes of
overhead from the TCP/IP protocols, plus from 13 to 62 bytes (depending on the number
of digipeaters in the path) of AX.25 overhead. If all the data and overhead has to fit into

Session, Presentation, Application

Transport

Network

Data Link

Physical

Figure 2-4 - Encapsulation

17

What is TCP/IP ?

256 byte packets, as is standard with AX.25, the overhead takes up more than 20 percent
of each packet.

One way to increase efficiency is to use larger frame sizes to reduce the proportion of
overhead to data; that's why Ethernet uses 1500 byte frames. Adding 40 bytes of overhead
to 1460 bytes of data is quite a bit more efficient than using 40 bytes of a 256 byte
packet2-5. Again, there’s a tradeoff: larger frames are more likely to be damaged by
collisions or interference (remember that in most data link layer protocols, one scrambled
byte clobbers an entire packet), so there’s a balancing act between increased efficiency
and increased retries.

Encapsulation is a powerful concept, and it can be very useful. For example, let’s say
you have two computers running NOS and connected to each other via an Ethernet
cable, as shown in Figure 2-5. Each computer has a radio port on a different channel,
and you want to retransmit on radio channel B the AX.25 packets heard by radio A. It’s
possible for NOS system A to take those AX.25 packets, encapsulate them inside TCP
(and IP, and Ethernet) frames, and send them via the Ethernet to NOS system B. System
B can strip off the TCP, IP, and Ethernet headers to recover the original AX.25 frame,
and send it to the radio for retransmission.

Gateway

Gateway

IP

AX.25

AX.25

AX.25

System B

System A

Channel A

Channel B

Figure 2-5 - Encapsulation Example

2-5 Although AX.25 technically limits packet length to 256 bytes, NOS can bypass this limitation.

18 Chapter 2

PART 1 – Understanding TCP/IP

This is exactly what “Internet gateway” systems do, except over a larger network.
They accept AX.25 data, encapsulate it in IP, and send it over the Internet to another
gateway, which recovers the original data and sends it out over the air. Except for the
strange callsigns you might see, this process is completely transparent to the AX.25
users at each end; to them the NOS system looks just like any other digipeater or
NET/ROM node. Extending the encapsulation concept further, the AX.25 packets sent
via the gateway can themselves encapsulate amateur TCP/IP frames. See Figure 2-6.

DATA

TCP
IP

AX.25

IP

TCP
IP

AX.25

TCP
IP

AX.25

TCP

TCP
IP

DATA

TCP

TCP
IP

System A
System B

Ham Radio
Ham Radio

Internet

Why Bother?

This stacking of protocols may seem like a real house of cards, but it gives us some
important advantages. By separating layers so that each builds on the one below,
developing new protocols is made much easier—the lower level pieces don’t need to be
reinvented each time. Each layer can be optimized to do what it does best. As the
example of Internet gateways shows, encapsulation also allows great flexibility because
it lets us “wrap up” protocols inside one another, as we will see later. That makes all
sorts of interesting things possible.

Figure 2-6 - Encapsulation - IP to AX.25 to IP

19

Chapter

3
Names and Addresses

Part 1: Understanding TCP/IP

It’s the IP protocol that does most of the complex stuff in a TCP/IP network—it is
responsible for getting data from the sender to its ultimate destination. This chapter
explains how IP handles one of the basic problems in any communication system:
identifying who’s talking to whom. Along the way, we’ll see how machine-friendly bits
and bytes are converted to human-friendly names.

Why IP Addresses?

Hosts on an IP network are identified with an IP Address, which is guaranteed to be
unique to that host. This guarantee exists because a central agency manages the
worldwide assignment of IP addresses (delegating that task to local address coordinators

for each network). Every IP frame includes the IP address of both the sender and the
final recipient of that frame, and these are the key pieces of information that make the
Internet possible.

Why not just use our amateur callsigns as addresses? There are a couple of good
reasons. Probably the most important is that a standardized address scheme can provide
information for routing data from station to station. We’ll talk a lot more about routing
in the next chapter, but for now you should know that TCP/IP allows packets to move
from one location to another via a series of “hops” from gateway to gateway.

20 Chapter 3

PART 1 – Understanding TCP/IP

IP addresses are designed so that each gateway can figure out which direction to send
a packet on its next hop. Ham callsigns don’t provide this kind of information, and the
assignment of callsigns by national authorities isn’t consistent enough to allow routing
rules to work (what’s good for the prefix hunters isn’t good for routing!).

Another reason to use something other than ham callsigns for network addresses is
that the world is a lot bigger than ham radio. Callsigns may mean a lot to us, but they
aren’t very intelligible to the non-ham world. Standardized addresses let us interoperate
with other TCP/IP based computer networks.

As we’ll see later, there is a place for ham callsigns in the scheme of amateur radio
TCP/IP. We use them as hardware addresses that identify specific participants in a
local area radio network. Although all networking schemes use some sort of low-level
address, the format of that hardware address is different for different network hardware.
For example, Ethernet uses a unique eight byte address burned into each Ethernet card’s
ROM chip. Other network cards use different, incompatible addresses. When we’re
running AX.25 over the air, we use callsigns as hardware addresses.

IP Address Structure

Since these protocols are used on lots of different hardware, it is necessary to use an
addressing system that works with all of them, that provides adequate routing
information, and that doesn’t take up a lot of space. To meet these needs, IP addresses
are formed as binary numbers 32 bits long, as shown in Figure 3-1. A defined number
of bits starting from the left are used for the network identification, or netid, while the
remainder form the host identification, or hostid. The number of bits used for each part
of the address varies depending on the type of network and is controlled by the netmask

associated with the network. The next pages will describe all this in much more detail.

21

Names and Addresses

For convenience, we usually treat the 32 bit IP address as four bytes of 8 bits each3-1,
and print and talk about IP addresses like this: 44.71.36.8. This is known as dotted

decimal or dotted quad notation because each of the four, period-separated numbers is
the decimal representation of one of the address bytes. By the way, you should never
add a leading zero to the numbers – "044.071.036.008" – because many systems can't
deal with address written that way. IP addresses can also be written in octal or
hexadecimal format, but except for the way some systems describe netmasks (which I'll
talk about later), you'll seldom see either of those notations used.

Separating Networks and Hosts

An IP address consists of two parts: a network part (netid) and a host part (hostid).
Though it’s simplest to think of the address as using all its 32 bits to identify a specific
host, that will lead to confusion. An IP address identifies both a network, and a host’s
connection to that network. Gateways use the network part of the address to identify a
network, and use their routing tables (discussed in the next chapter) to decide how to
move the packet closer to that network.

Once the packet reaches a gateway on the same network as the desired host, that
gateway uses the hostid to send the packet on the final hop to its destination. Without
this separation of networks from hosts, gateway routing tables would have to contain
entries for each host, and that’s simply not practical. Using the IP address to carry
network information greatly simplifies the gateway’s task.

00101100 01000111 00100100 00001000

44 . 71 36 8. .

Figure 3-1 - IP address

3-1 A note for trivia lovers: In the IP world, an eight bit chunk of data is formally known as an "octect" and not a
"byte", because there are some computers systems that use bytes of different lengths. In this book, I use "byte"
because all the machines commonly used for amateur TCP/IP have eight-bit bytes, and "byte" is a much more
natural term for most of us.

22 Chapter 3

PART 1 – Understanding TCP/IP

The division between the network and host parts of an address is based on the class of
the network, as assigned by the international organization in charge of such things.
The division can occur after the first byte (a Class A network), after the second byte
(Class B) or after the third byte (Class C). These classes are designed to accommodate
networks of different sizes. A Class A network can support lots of hosts — 224 minus 3,
to be exact. But there can only be a handful of Class A networks because the single
network byte supports only at most 256 networks — and actually the allocation scheme
allows for only 127 of them. Class B networks use the first two bytes for the netid, and
the last two bytes for the hostid. There is room for about 16,000 Class B networks that
can each support about 65,000 hosts. Finally, with three bytes of netid, there can be lots
and lots of Class C networks, but each one only supports 253 hosts3-2.

3-2 Hostids with bits that are all zero or all one are reserved for special purposes, so each network can have at
most two hosts less than the maximum number – 253 instead of 255 for a Class C network.

Figure 3-2 - Network and Host Parts of an IP address

For administrative purposes, networks assigned by Network Information Center are
given names. Thanks to some forsighted effort by Brian Kantor, WB6CYT and others,
the amateur radio community has been granted use of a Class A network (one of only
127) that's known as amprnet – a handy abbreviation that I'll use frequently.

00101100 01000111 00100100 00001000

Network Host

00101100 01000111 00100100 00001000

Network Host

00101100 01000111 00100100 00001000

Network Host

Class "A"

Class "B"

Class "C"

23

Names and Addresses

Networks can be broken into subnets—smaller groups of systems that are treated as
their own networks. Routes can point to subnets as well as to networks, and this provides
flexibility to deal with strange routing problems and complicated physical designs.
Subnets can also simplify network administration by delegating some of the
responsibility for a network down to local groups. Subnet are created by using some of
the most significant (left-most) bits of the hostid to instead identify subnets. Although
it’s most common to create a subnet on a byte boundary, it’s possible to steal only a few
bits rather than a whole byte or more to serve as the subnet part of the address3-3. Figure
3-3 shows how an IP address is broken into network, subnet, and host parts.

3-3 Until recently, the official rules for creating subnets limited how many subnets could be created by requiring
that the subnet part of the host ID could neither contain all zeroes, nor all ones. Without going through all the
math, this meant that a Class C network could not be split in half to create a pair of 126 host networks; the best
you could do was break it into four parts, throw away two of them, and end up with two 62-host subnets.
However, most IP implementations today, including all versions of NOS and Linux, ignore that restriction, and
current Internet design rules permit essentially unlimited subnetting. Most ham IP networks ignore this limitation
without ill effect, but this may be a "gotcha" if you need to internetwork through commercial routers that still
follow the old rule.

00101100 01000111 00100100 00001000

Network Host

Class "A"
8 bits 24 bits

00101100 01000111 00100100 00001000

Network Host

Class "A"
Subnetted to Class C

8 bits24 bits

Subnet

00101100 01000111 00100100 00001000

Network Host
Class "A"
Subnetted to 4

class C networks 6 bits26 bits

Subnet

44 . 71 36 8. .

Figure 3-3 - Subnetted Addresses

24 Chapter 3

PART 1 – Understanding TCP/IP

Amprnet is subnetted. It is a Class A network and is therefore “flat”– it supports lots

of hosts that (in theory, but not in ham radio practice) can all talk to each other directly.
But since ham IP systems are scattered around the world and don’t have any common
interconnection, we’ve decided to create subnets—using the second byte of the address
(the first byte of the hostid) to establish a subnet for each state or country, and some or
all of the third byte (the second byte of the hostid) for regional subnets. This makes it
easier to administer the network, and makes it much easier to set up routing systems3-4.
Table 3-4 shows how subnets of the amateur radio network are set up.

44.002 USA:Calif: Sacramento
44.004 USA:Calif: Si Valley - SFO
44.006 USA:Calif: Sta Barb
44.008 USA:Calif: San Diego
44.010 USA:Calif: Orange County
44.012 USA:Eastern Wash,Idaho
44.014 USA:Hawaii & Pacific
44.016 USA:Calif: LA/Valley
44.017 USA:Calif: Kern County
44.018 USA:Calif: San Brdo
44.020 USA:Colorado: Northeast
44.022 USA:Alaska
44.024 USA:Washington:Western
44.026 USA:Oregon
44.028 USA:Texas: North
44.030 USA:New Mexico
44.032 USA:Colorado: Southeast
44.034 USA:Tennesee
44.036 USA:Georgia
44.038 USA:South Carolina
44.040 USA:Utah
44.042 USA:Mississippi
44.044 USA:Mass:western
44.046 USA:Missouri
44.048 USA:Indiana
44.050 USA:Iowa
44.052 USA:New Hampshire

44.054 USA:Vermont
44.056 USA:Eastern&Central Mass
44.056.12 USA:Mass: Worcester
44.058 USA:West Virginia
44.060 USA:Maryland
44.062.0 USA:Virginia-Central
44.062.32 USA:Virginia-Charlottsville
44.062.64 USA:Virginia-Eastern
44.062.128 USA:Virginia-Western
44.062.192 USA:Virginia-Northern
44.064 USA:New Jersey: northern
44.065 USA:New Jersey: southern
44.066 USA:Delaware
44.068.1 USA:New York: NY & LI
44.068.48 USA:New York: 30 Rock
44.068.52 USA:New York: NY & LI
44.068.64 USA:New York: ENY
44.069 USA:New York: WNY
44.070 USA:Ohio - oldnet
44.071 USA:Ohio - newnet
44.072/16 USA:Illinois
44.073/16 USA:Illinois
44.074 USA:North Carolina (east)
44.075 USA:North Carolina (west)
44.076 USA:Texas: south
44.077 USA:Texas: west
44.078 USA:Oklahoma
44.080 USA:Pennsylvania: eastern

44.082 USA:Montana
44.084 USA:Colorado: Western
44.086 USA:Wyoming
44.088 USA:Connecticut
44.090 USA:Nebraska
44.092 USA:Wis, up pen Michigan
44.094 USA:Minnesota
44.096 USA:District of Columbia
44.098 USA:Florida
44.100 USA:Alabama
44.102 USA:Mich (W lower pen)
44.102 USA:Mich (E lower pen)
44.104 USA:Rhode Island
44.106 USA:Kentucky
44.108 USA:Louisiana
44.110 USA:Arkansas
44.112 USA:Penn: western
44.114 USA:N&S Dakota
44.116 USA:Oregon,WA
44.118 USA:Maine
44.120 USA:special use in Nevada
44.122 USA:Kansas
44.123 USA:Virgin Islands
44.124 USA:Arizona
44.125.0 USA:Southern Nevada
44.125.128 USA:Northern Nevada
44.126 USA:Puerto Rico

Table 3-4 - Amprnet subnets

This list does not contain International subnets. Refer to UCSD master subnet list for all subnets.

3-4 Some may argue that amprnet subnets exist only for administrative and not routing purposes, but as a practical
matter we rely on these subnet for routing.

25

Names and Addresses

It follows from all this that an IP network (or subnet) has one important characteristic:
all the hosts and subnets on a network are reachable from outside the network through a single

gateway. Figure 3-6 shows an example network with subnets. To the outside world, all
the hosts on the Ohio network can be reached through gateway 44.71.1.1. Within the
network, all the hosts on subnet 44.71.36.0 can be reached through gateway 44.71.36.1,
and all the hosts on subnet 44.71.32.0 can be reached through gateway 44.71.32.1.
Although the subnets are meaningful within the 44.71.0.0 network, they are invisible to
the outside world—the network gateway accepts packets bound for the subnets, and
forwards them on to the appropriate subnet gateway.

We won’t get into all the semantics of addressing just yet, but as an example the address
44.71.36.8, as illustrated in Figure 3-5, breaks down as

44. The network assigned to amateur radio TCP/IP.
71. The subnetwork for Ohio.
36. The Dayton subnetwork.
8 A specific host address within that area.

44.71.36.0
Dayton Net

44.71.0.0
Ohio Net

44.0.0.0
AMPRNET

ftp telnet

new mail! 44.71.36.8
Host

Figure 3-5 - Dayton Net Subnet example

26 Chapter 3

PART 1 – Understanding TCP/IP

By the way, it’s possible for a single host to have more than one IP address
(Figure 3-7). If it has more than one interface (a physical connection to a single network),
each interface may have its own address. Although NOS doesn’t require you to use a
different IP address on each interface, it’s a good idea to do so. If a host has two interfaces,
each talking to a different network or subnet, each interface needs an address that’s part
of the network it belongs to. You’ll see why when we talk about how IP routing works.

44.71.36.0
Dayton Net

44.71.0.0
Ohio Net

44.71.32.0
Cincinnati

Net

ftp telnet

new mail!

ftp telnet

new mail!

Gateway
44.71.36.1

Gateway
44.71.32.1

ftp telnet

new mail!

Gateway
44.71.1.1

The World

Figure 3-6 - Example network with subnets

Figure 3-7 - "Multi-homed" host.
Each interface has its own address that is local to the network with which it communicates.

Gateway

44.71.1.1 44.71.2.1

27

Names and Addresses

IP Address Coordination

If you’re the only IP user in town, or you and a couple of other local hams are
experimenting with NOS and don’t have any sort of gateway or other connection to
other IP hosts, it’s not necessary to obtain a registered IP address. As long as you don’t
connect to the outside world, the addresses you use won’t matter to anyone else. But if
you have any sort of link to other IP hosts, you’ll need to get one or more IP addresses
assigned to your system. The amprnet subnet 44.128.0.0 has been set aside for
experimental and uncoordinated use.

Addresses are assigned by coordinators who derive their authority from a central
registry. The coordinator for amprnet is Brian Kantor, WB6CYT. He has delegated
authority for subnets to various state and national coordinators, and the coordinator
assigned to your country or state is the person you should contact to obtain an address.
Appendix B lists these coordinators as of this printing; an up-to-date version is available
from the ftp.ucsd.edu site on the Internet.

IP Ports

There's another part of the IP address scheme that you should be aware of. You'll
recall that a host can have many simultaneous streams of data flowing, supporting
multiple sessions of telnet, ftp, smtp, and other protocols, and those multiple sessions
can all be going to a single remote host. How does it keep them all straight ?

The answer is ports. A port is an additional part of the address information sent in
each IP frame. Each server, like telnet, ftp, and smtp, listens for new connections on a
specific, standard port. For example, the telnet server listens on port 23.

So, when a packet arrives at a host with the destination port set to 23, the TCP/IP
system hands that packet to the telnet server to open a new telnet session. The server
assigns a unique port (usually numbered above 1024) to that session and sends that
port number back to the client. This session port is used to identify the packets, both
incoming and outgoing, belonging to that session. This structure allows packets for
different servers and sessions to be multiplexed using a single IP address.

28 Chapter 3

PART 1 – Understanding TCP/IP

Port numbers are usually invisible to the user, and don't normally require local
configuration; the numbers used are standardized and are built into the default
configuration of most TCP/IP protocol stacks, including NOS. However, there are times
– particularly for debugging – when knowing about port numbers is very useful.3-5

Hostnames

Though IP addresses make perfect sense to a computer, they are not very intuitive to
human beings, and they are a real pain to remember. English-like hostnames are much
easier to use, and TCP/IP programs, including NOS, map hostnames to IP addresses
for the benefit of human beings.

The convention in ham radio TCP/IP is to use callsigns as hostnames. To help reduce
confusion, we usually print hostnames in lower case, and callsigns in capital letters—
my hostname is n8ur,3-6 and my call is “N8UR”. (Hostnames aren’t case-sensitive, so
you are free to use any combination of upper or lower case that suits your fancy — the
computer won’t care.)

There's no requirement, though, that the hostname match your call, and there are
some instances where another name is more descriptive. For example, the hostname
dayton-switch is more meaningful to a distant station than w8apr would be. A hostname
can be any combination of letters or numbers (plus a few punctuation symbols) up to __
characters long. Hostnames are not case sensitive.

You should be a bit restrained in your creativity, though. There are two important
things you need to remember when deciding on hostnames. First, any hostname on the
amprnet needs to be unique -- if Dayton, Ohio; Dayton, Indiana; and Dayton, Tennessee
all claim dayton-switch.ampr.org, there's going to be trouble. This is a strong argument
in favor of using callsigns as hostnames, or at least including a call as part of the name;
you can be pretty confident that no one else has the same callsign you do.

3-5 Port numbers can be an issue if you are connecting to the Internet from behind a firewall. As a security
measure, many firewalls block packets bound for certain ports from passing; this can prevent some protocols from
working through a firewall.
3-6 Except in sample configuration files, I’ll put hostnames in italics to set them off. Unless there’s a good reason,
I won’t include the trailing ampr.org in the examples; just assume that you’d add that part to the end of the
hostname to create a full address.

29

Names and Addresses

Second, where appropriate you should try to make hostnames descriptive. switch-

w8apr provides a useful clue about the purpose this host serves. By the way, it's OK to
create multi-part hostnames using periods as separators, like switch.w8apr.ampr.org

but I personally don't like this format -- it implies a hierarchical structure that probably
doesn't exist. If you have multiple interfaces on your host, you may want to give each
one a descriptive name, like vhf-n8ur, but it's probably a good idea to ensure that you
have at least one published hostname that is no more or less than your callsign -- because
that's the name people will naturally try when they want to reach you.

Aliases (also known as CNAME records) provide better way to create descriptive
names for local hosts, and I'll describe how to use them a bit later.

By itself, a hostname doesn’t constitute a complete address. Tacked to the end of the
hostname is a domain name. A domain is a group of machines that are logically (though
not necessarily physically) connected together. Domain names, like IP addresses, are
hierarchical; periods separate parts of the name, with each part representing a different
level. The domain name, however, is ordered backwards from an IP address—its highest-
level portion is at the right.

The ham network’s domain is ampr.org3-7; “org” (short for “organizations”) is the top
level domain, and “ampr” (for AMateur Packet Radio) is the second level domain,
containing all ham TCP/IP hosts. Any lower level parts of the hostname are optional
— the ampr.org domain doesn’t officially recognize, for example, state or country
subdomains like “usa.ampr.org”.

When you combine a hostname with a domain name, you get something like
n8ur.ampr.org. This is called a Fully Qualified Domain Name (FQDN—knowing this
acronym allows you to sound like a real expert). For services like email, where the
identity of a specific user is important, we add the user’s login name to the beginning of
the address, separated from the FQDN by a “@” character. This combination is commonly

3-7 Not to be confused with the "amprnet" IP network. IP networks and domains of hostnames are two very
different things; I'll talk more about the distinction later.

30 Chapter 3

PART 1 – Understanding TCP/IP

known as an Internet address and is the address form used for most electronic mail in
the real world. For example, if there is a user “jra” at n8ur, jra@n8ur.ampr.org would be
that user’s full internet address. Figure 3-8 illustrates this.

Figure 3-8 - Internet E-Mail Address and FQDN

Top level domain
Organization domain

jra @ n8ur . dayton . tapr . org

Email Address

FQDN

Organization subdomain
Host in subdomain

User account

Although all the hosts on a single IP subnet should be able to reach each other directly,
that’s not the case for domains. Assuming that domains and networks map directly to
each other can cause a lot of confusion. One network can contain hosts from several
domains, and vice versa. Think of the IP network and its connectivity as an engineering
concept, and the domain as an administrative one. IP subnets make life easier for routing
software; domains are intended to make life easier for system administrators.

The "amprnet" 44.0.0.0 Class A IP network (often referred to as our address space),
and "ampr.org" as our hostname domain (our namespace) are two completely separate
concepts that don't have any linkage to one another. Any hostname can point to any IP
address, regardless of he network or domain to which each belongs.

For example, n8ur.ampr.org could point to a host on network 192.128.55.55, and similarly
n8ur.febo.com could legitimately point to a host with 44.71.36.8 as its IP address. This
sort of mix-and-match identification is particularly common at Internet to amprnet
gateways. Understanding that address spaces and namespaces are completely separate
(in technical terms, disjoint) is key to understanding TCP/IP's flexibility. An example
is shown in Figure 3-9.

31

Names and Addresses

Now is a good time to address one very common area of confusion. Having an internet
address doesn’t mean that you can be reached on the Internet! The Internet (with a
capital “I”) is the name used for the maze of interconnected networks that use TCP/IP
protocols to support public access to World Wide Web, ftp servers, the worldwide email
system, and much of the Usenet or "NetNews" system. However, you can have access
to many of the services offered by the Internet without actually being an Internet host.
Conversely, just because you have an internet address doesn’t mean that email from the
Internet will magically arrive at your doorstep.

This is especially true of the ampr.org domain. Unless you have an arrangement with
an Internet or uucp gateway, and an appropriate record at the ampr.org domain name
server3-8, your host doesn’t exist as far as the Internet is concerned. The bottom line is
that ampr.org uses internet protocols, and its services look like those offered by the
Internet, but it’s really a parallel universe. Only where a bridge exists between the
Internet and ampr.org universes can data flow between them.

For example, until recently my home system didn't have a direct connection to the
Internet, but mail sent to my ampr.org address still reached me at home. That's because
I had an arrangement with another system that was on the Internet to act as a mail

www.dayton.tapr.org

w8apr.dayton.tapr.org

192.168.207.162

44.71.36.130

192.168.207.167

192.168.207.168

tnos.dayton.tapr.org

w8apr.ampr.org

1 domain, 2 networks

1 network, 2 domains

Figure 3-9 - Domains and Networks aren't the same thing!

3-8 The master DNS database for ampr.org lives at ucsd.edu, and this sort of email gatewaying requires proper
records in that database. Your amprnet IP address coordinator can add those records as necessary.

32 Chapter 3

PART 1 – Understanding TCP/IP

exchanger for me. When people sent mail to my ampr.org address, the DNS (short for
Domain Name System – more on that in the next pages), pointed that traffic to my mail
exchanger, which then sent the messages on to me via uucp, a UNIX-based networking
system that's designed to transfer messages via dialup phone lines. So, even though I
wasn't "on the Internet" I was able to send and receive Internet email. Similarly, it's
possible to be part of the Usenet system via uucp without having a direct Internet
connection.

Mapping Hostnames to IP Addresses

Hostnames have to be linked somehow with the IP addresses they represent. This can
happen in two ways: either by manually maintaining a file containing the hostname to
IP address mappings of all the stations the host ever wants to reach, or by asking a
nameserver to provide the mappings as they are needed (Figure 3-10). Whether manually
or automatically obtained, on NOS systems the information is stored for future use in a
file called DOMAIN.TXT.

Host DNS

hey DNS,
who is

ke8tq.ampr.org
ke8tq.ampr.org
is 44.71.36.18

Thanks.
44.71.36.18,

are you out there ?

ke8tq.
yes, here I am

ke8tq

Host adds
ke8tq.ampr.org,

44.71.36.18
to local cache

Figure 3-10 - DNS lookup

33

Names and Addresses

It should be apparent that using a nameserver is a lot easier than manually creating
and maintaining a DOMAIN.TXT file (Figure 3-11). NOS includes nameserver support
and if there's a full-time host on the local network that is willing to do the job, everyone
else's life will be made easier.

DNS relies on the existence of a nameserver which either knows, or can find, the IP
addresses for all the hosts that need to be reached. In the connected Internet, each
domain has a master nameserver that provides authoritative answers to DNS requests.
The DNS system is designed so that all requests for mappings ultimately relate back to
that authoritative data. If your network is connected to the Internet via a gateway, it's
possible to configure the local namserver to work in this way, using data from the master
ampr.org nameserver at ucsd.edu (setting all that up is beyond the scope of this book).
However, using the master nameserver also requires that all the hosts you need to reach
are registered there – and many amp.org hostname/IP address pairs have been assigned
by local coordinators who don't upload their data to the master database.

If you can't get authoritative data via the Internet DNS system, you'll need to manually
maintain the necessary records at your local nameserver. This isn't as good as having it
done automatically, but it's still a lot less effort than requiring everyone to maintain
their own DOMAIN.TXT file by hand.

Regular address records
w8apr.ampr.org. IN A 44.71.36.2
n8ur.ampr.org. IN A 44.71.36.17
ke8tq.ampro.org. IN A 44.71.36.18

#A "cname" or alias to give an easy to remember name to a popular server
mvfma.ampr.org. IN A w8apr.ampr.org.

A mail exchanger record -- mail to ke8tq will be sent to w8apr
ke8tq.ampr.org. IN MX w8apr.ampr.org.

Figure 3-11 - Sample Domain.txt entries

34 Chapter 3

PART 1 – Understanding TCP/IP

DNS uses several types of address records. The most common is a simple mapping of
an official hostname to its IP address — these are called “A” (for Address) records.
Another type is the “MX” record (for Mail eXchanger). It doesn’t match a host to an IP
address, but rather to another host that will receive mail on its behalf. That’s how my
ampr.org email link worked. When someone on the internet wanted to send a mail
message to me, their mail system asked DNS to find ag9v.ampr.org. DNS responded
with the my mail exchanger’s address, and the sender shot the message off to the mail
exchanger using the smtp mail transfer protocol.

A third type of DNS record handles aliases (nicknames) for hostnames. It’s called a
CNAME record (short for Canonical NAME). CNAME records are useful because
sometimes a system’s official hostname is long, or doesn’t bear much resemblance to
what that host does. For example, a system that offers a public ftp server might have an
A record in DNS under the hostname s321.iggy.net5.foobar.com. It could also have a
CNAME record for ftp.foobar.com that points to that long name but is much easier to
remember (and type!). That’s what a CNAME record really is: a pointer to the official
hostname. One important thing to remember is that a CNAME record doesn’t directly
match an IP address; it can only point to a hostname that’s in the DNS system, and DNS
must then obtain the IP address from the A record for that host.

Of course, if you choose nice, descriptive CNAMEs like "mailserver" and upload them
to the master ampr.org database, you may find that you're overwriting someone else's
use of the same alias. That's not very polite. But the chances are good that most of the
CNAMEs you want to use are really of local interest only, and don't need to be part of
the master database that's accessible worldwide. If that's the case, you can configure
your local nameserver to support these alias records, without uploading them to the
database at ucsd.edu. Just add them to the domain.txt file of the local server.

The DOMAIN.TXT file that NOS uses to find hostname-to-address mappings is a
DNS database, and it can contain all three of these record types (as well as some other
less common types). Appendix F shows the layout of DOMAIN.TXT.

35

Names and Addresses

There’s one last twist to hostnames and FQDNs. Some services (such as DNS) need to
know whether an address they are processing is in fact an FQDN. To do so, they look
for a trailing period at the end of the domain name. Old versions of NOS ignore this
issue, but newer ones (such as JNOS and TNOS) insist that you “anchor” all domain
names with a period at the end of the name. If you don’t, they’ll add the default domain
suffix (usually ampr.org, set by the domain suffix command described later) to the end
of the address.

In other words, if you issue the command “hostname n8ur.ampr.org” to JNOS, it will
think your hostname is n8ur.ampr.org.ampr.org and things will not work at all the way
you expected. Assuming you’ve set the domain suffix to ampr.org, entering either
“hostname n8ur” or “hostname n8ur.ampr.org.” (note the trailing period) makes things
work the way they should. To avoid confusion, I prefer to always use FQDNs with
trailing periods in the DOMAIN.TXT file. It's dangerous to rely on the domain suffix
being properly set. Figure 3-12 shows how the domain suffix affects entries in
DOMAIN.TXT.

Figure 3-12 - Importance of the trailing dots

Default domain set to:

n8ur becomes
n8ur.ampr.org becomes

Why ? Because we didn't use an ending period

n8ur.ampr.org. becomes n8ur.ampr.org
wd5ivd.tapr.org. becomes wd5ivd.tapr.org
 Why ? Because we used a period at the end

ampr.org

n8ur.ampr.org
n8ur.ampr.org.ampr.org

36 Chapter 3

PART 1 – Understanding TCP/IP

Hardware Addresses

Earlier, I said that although ham callsigns don't make good candidates for IP addresses,
they do serve an important purpose in the amateur radio TCP/IP architecture. That
purpose is to serve as the hardware address that identifies a host (more specifically, a
particular network interface on a host) to other hosts on the local network.

Remember that protocol layers are encapsulated, and that lower layer protocols have
no knowledge of what's in the higher level frames they transport. Thus, it's not possible
for the data link (in our case, probably AX.25) to know the IP addresses contained in the
IP frames it is handling. And, knowing them wouldn't be of much use anyway because
the AX.25 protocol relies on ham callsigns as identifiers. AX.25 packets are sent from
one callsign to another, not from on IP address to another. The same is true of other
physical and data link layer mechanisms: Network cards also have unique identifiers,
which their data link layer protocols use as hardware addresses.

The Address Resolution Protocol (ARP) is used to map IP addresses to hardware
addresses. One important thing to understand about hardware addresses and ARP is
that they operate only on the local area network – in other words, between those hosts
who can communicate with each other directly without going through an IP switch.
Hardware addresses never travel beyond the LAN – IP addresses are the identifiers
that travel through gateways.

Because hardware addresses and ARP work intimately with the routing process that's
discussed in the next chapter, it's best to leave a further explanation of how hardware
addresses and ARP fit into the picture until then.

37

Chapter

4
Routing

Part 1: Understanding TCP/IP

It’s time now to talk a bit more about how the Internet Protocol routes packets so that
data can move from one host to another through gateways and other complications.

First, what is routing, and why bother? Part of the magic of TCP/IP, and particularly
the IP part of it, is that it can be used to bridge networks and connect hosts that are
thousands of miles, and dozens of networks, away. The IP routing mechanism give us a
way to move a packet toward its ultimate destination in small steps, without requiring
hosts to know the full route to each and every other host.

The concept is simple: the responsibility of each IP host that receives a packet is to
move it one step closer to its final destination. If the host is the final destination, it
moves the packet up to whatever higher-level protocol is going to deal with it; otherwise,
it sends the packet on to the next gateway in line.

How does a host decide who the "next gateway in line" is? That's where routing comes
in. Routes set in each host's configuration files provide rules that tell it how to handle
incoming IP frames. These routing rules operate on the frame's destination IP address,
and they are what this chapter is all about.

38 Chapter 4

PART 1 – Understanding TCP/IP

This scheme provides one of IP’s greatest strengths: the originator of a packet does
not have to know how to get that packet to its destination. It only needs to know how
to reach a gateway that can move the packet a bit further along. To paraphrase the
stockbroker’s advertisement, “At IP Hutton, we measure success one hop at a time.”

Subnets, LANs, and Routing Rules

In an ideal world, the networking software would be able to figure out all by itself the
best way to get a packet from point A to point B, and to work around system outages
and propagation quirks. The Internet uses several protocols to accomplish this feat,
and they work pretty well. Unfortunately, that sort of dynamic routing is difficult to
accomplish in RF networks like ours, and although folks are working on the problem,
at present most ham IP networks use static routing instead. Static routing simply means
that the rules defining where a host should send packets are manually entered into a
routing table on each host, and they need to be manually changed when the network
changes.

A TCP/IP host has one or more routes defined in its configuration files. At run time,
these build a routing table in memory that describes each route's destination network,
the hardware interface used to reach that network, and, if the destination is a remote
network, a gateway on the local network which knows how to forward packets toward
that network.4-1

Every host has at least one route, most hosts have two, and some have three routes or
more. The one route that must be present is the default route, which tells the system
where to send packets when there’s no more specific route available. If your network
has one gateway system that reaches the rest of the world, your default route probably
points there. The second route handles hosts on the local area network—there’s no

4-1 The destination in a routing rule can be a single host, or more usually, a network.

39

Routing

reason to go through a gateway to talk to hosts you can reach directly. In NOS, the
following commands might be used to establish these two routes:

route add default vhf 44.71.36.1

route add 44.71.36.0/24 vhf

The first command says that all packets should be sent via the vhf interface to the
gateway station with IP address 44.71.36.1. The second command says that all packets
bound for stations whose first three IP address bytes are 44.71.36 should be sent directly
via the vhf interface — meaning these stations can be reached directly, without going
through a gateway.

Note the 44.71.36.0/24 in that command. That syntax the key to NOS routing. The
part before the “/” identifies the beginning address of the network, and the “24” — the
network mask, or netmask — indicates that the first 24 bits of that address are the netid

(network part). 24 bits is three bytes, so in this example the left three bytes – 44.71.36 –
form the netid. Each incoming packet’s destination address is checked against the routing
table, and if the first three bytes of the packet’s address match the first three bytes of one
of the routes, that route is used to send that packet on its way toward its destination. In
this example, a packet destined for 44.71.36.8 would match this route, because the first
24 bits are the same as the netid.

The use of the "/xx" notation to define the number of network bits in a routing statement
is unique to NOS. Most TCP/IP implementations use a different notation. They usually
write netmasks in dotted decimal form, though some systems may use hexadecimal,
octal, or even binary format (NOS supports netmasks in hex format as part of the ifconfig

command).

40 Chapter 4

PART 1 – Understanding TCP/IP

In netmask notation, all the bits assigned as the netid are set to one, while those assigned
to the hostid are set to zero; for ease of use, the result is converted to dotted decimal or
hex form. For example, a netmask of 255.255.255.0 (or "0xffffff00" in hex) means that the
first three bytes of the route serve as the netid, and the last byte serves as the hostid. A
system using this method might format a route statement like this:

route add 44.71.36.0 netmask 255.255.255.0 vhf

Figure 4-1 shows how the netmask is used to derive the netid and hostid parts of an IP
address. Using netmasks yields the same results as the "/24" notation described above.
I use the NOS "/xx" notation in the rest of this discussion because it's both shorter than
the other method, and more descriptive of what's happening.

Figure 4-1 - Netmasks

Address

Netmask 24 bits

Result

44.71.38.2

255.255.255.0

=

=

=

00101100 01000111 00100100 00001000

11111111 11111111 11111111 00000000

11111111 11111111 11111111 00001000

Host Part

But wait a minute — what if two or more routes match a destination address> Since
the default route, which matches all addresses, is defined first, why don’t all packets,
even those intended for the local network, get sent via that route to the gateway? The
default route doesn’t get in the way because each packet is evaluated against all known
routes, and matches the destination address against the most specific network — the one
with the longest netmask — that appears in the routing table. The default route has a
netmask length of 0 — meaning that any other route is more specific, and will take
precedence over it.

41

Routing

Adding a third route to this example shows the power of routing rules. Let’s say that
for some reason, one station — ke8tq [44.71.36.18] — can’t be reached directly even though
he’s part of the 44.71.36 network. We need to go through a gateway whose address is
44.71.36.3 to reach him. Here’s a routing command to do this:

route add 44.71.36.8/32 vhf 44.71.36.3

Our table now includes three routes:
default vhf 44.71.36.1

44.71.36.0/24 vhf

44.71.36.18/32 vhf 44.71.36.3

To reach ke8tq, NOS would use the last route in the table to send the packet via 44.71.36.3,
not one of the other two routes. Why? “44.71.36.18/32” tells NOS to match incoming
packets against the entire address (“/32” signifies that all four bytes is used as the
netmask, and thus the whole address is used as the netid). This 32 bit match is more
specific than the 24 bit match for 44.71.36.0 — it will match exactly one station! — in the
second route, and will take precedence over it. Figure 4-2 shows how the route matching
process works.

44.71.38.132

No

No

Yes

to interface
UHF

not reached

route

44.70.0.0/16

44.71.38.0/24

44.71.38.132/32

default

interface

netrom

vhf

uhf

Figure 4-2 - Route matching
44.71.38.0/24 does not match because 44.71.38.132/32 is more specific

42 Chapter 4

PART 1 – Understanding TCP/IP

4-2 Wait a minute. Why only 253 hosts when 8 bits of binary equals 255 decimal? Host address “0” is reserved as
a network ID, and host address “255” is used as a broadcast address (discussed later) so it’s not available, either.

Although in this example all the routes line up on byte boundaries (the number of bits
is 0 or a multiple of 8), they don’t need to. The netmask can be anything from 1 to 32.
For example, a route of 44.71.36.0/25 uses the first three bytes of the address, plus the
first bit of the fourth byte, as the netmask. This leaves 7 bits of the last byte to identify
up to 128 hosts for this network. Figure 4-3 shows how a 25 bit netmask works.

Why would you want to subnet on something other than a byte boundary? The reason
is efficiency. Chances are there aren’t 2534-2 ham IP hosts sharing a single channel that
you can reach directly from your station, and that there won’t be for a while. Assigning
a full subnet to that channel probably wastes at least 200 addresses. By using a 25 bit
netmask, you can split the subnet into two pieces, each capable of supporting 127 hosts.
In a more rural area a 26 bit netmask could provide four networks of 63 hosts each. This
kind of subnetting allows much more efficient use of the address space we have available.

Figure 4-3 - How a 25 bit netmask works

44.71.36.14

to VHF port

44.71.36.144

route add 44.71.36.0/25 vhf

route add 44.71.36.128/25 uhf

to UHF port

43

Routing

This routing mechanism is pretty slick. With proper subnet definitions, we can use a
few routing commands to ship IP frames all over the place. However, it’s necessary to
put some thought into how IP addresses are assigned. For routing purposes, you should
consider each local group of stations working on the same frequency and able to contact
each other directly (without needing a gateway) to be a local area network, or LAN.
Each LAN should be assigned an IP subnet so that a single routing statement can be
built to hit that subnet. Figure 4-4 shows the routing process from end to end.

Figure 4-4 - Routing

Packet for
44.71.38.131

44.71.38.2
Host 1

Routing table:
send to 44.71.38.1

Routing table:
send to 44.71.38.131

44.71.38.1
44.71.38.129

Gateway

Receive data
and reply

44.71.38.131
Host 2

Packet for
44.71.38.2

Routing table:
send to 44.71.38.129

Routing table:
send to 44.71.38.2

Receive
Data

Routes:
44.71.38.1/25
44.71.38.128/25

44 Chapter 4

PART 1 – Understanding TCP/IP

For example, if an area has two different frequencies carrying IP traffic – two LANs –
each one should be assigned its own subnet. That way, a switch can route traffic between
them, or to the rest of the network, with only a few routing statements. If addresses are
randomly assigned from the same subnet to hosts on both frequencies, the switch and
all the users will either need to maintain a routing statement for each and every host,
pointing to the interface the switch uses to reach that host, or they will all have to run a
dynamic routing protocol. And, unfortunately, there’s no dynamic routing protocol in
existence yet that works well with networks like ours.

What this means is that we should follow a simple rule when setting up IP subnets:
subnets should be based on connectivity, not geography. In other words, don’t assign a
subnet to a county, or to one quadrant of a state. Instead, assign subnets to natural
networks — the folks in an area who are all on the same frequency and can all
communicate directly with each other. If local activity takes place on two or more
frequencies, assign a separate subnet for each. Figure 4-5 illustrates this.

Figure 4-5 - Example subnet. Gateway serving two subnets.

44.71.1.1

Gateway
44.71.2.2

44.71.2.3

44.71.3.2

44.71.3.3

The World!

44.71.3.1 44.71.2.1

145.05 MHz 446.15 MHz

45

Routing

Assuming there’s some sort of backbone or wide-area network that connects switches
together, with each switch serving a local network, the sensible thing to do is assign
subnets around those switches. In other words, if you connect to the rest of the network
via switch A, your IP address should be on the subnet assigned to switch A. The fact
that you happen to be across a county, or even a state, line from switch A is irrelevant.
Radio waves don’t pay any attention to borders!

Subnets should be invisible to the outside world; unique routing to deal with subnets
should only be required within the network. The same should be true of sub-subnets
such as we have on amprnet (remember that the state and country networks are usually
subdivided down to local networks). If you are designing a subnet scheme, one of your
goals should be to make routing from the outside world as simple as possible.

For example, if we decide to divide the 44.71.36.0 (sub)network into two further subnets
(within 25 bit netmasks) to support separate LANs on VHF and UHF channels there
should be a single gateway visible to the rest of the network that will handle packets for
the full 44.71.36.0/24 range. That gateway will have an interface on each of the LANs,
and can route packets from the outside world to either of them. That way, other networks
won't have to maintain multiple routes.

ARP: Mapping IP Addresses to Hardware Addresses

You may see a problem with this idea of gateways routing packets. Unlike AX.25
packets that include the callsigns of all the digipeaters along the way, IP frames don’t
include the addresses of gateways; they only identify the destination address. How do
I send a packet addressed to 44.62.32.15 to a local gateway addressed 44.71.36.1? Here’s
where the distinction between IP addresses and hardware addresses comes into play.

46 Chapter 4

PART 1 – Understanding TCP/IP

To understand the mechanics of IP routing, you need to know two things: first, a host
monitors the channel for packets sent to its hardware address, not its IP address. Second,
the destination IP address of a packet is set by the originating station, and is not changed
by any intermediate gateway.

When a host needs to send a packet, it examines the destination IP address and
determines from the routing table whether to send the packet directly to the destination
host (because that host is on the local LAN), or to a gateway. In either case, it finds the
hardware address of the recipient and uses that address at the data link layer to send
the packet to the recipient station. The IP address is used on an end-to-end basis to
route packets; hardware addresses are used hop-by-hop to reach the next stop along the
way.

How does a host find a hardware address? It’s not practical to maintain a huge
configuration file with every hardware address to IP address match; you would need to
have an entry for every host you might ever want to reach, as well as special rules to
deal with gateways. And, callsigns are subject to change; maintaining such a database
would be very difficult indeed. There’s a pretty clever solution to this problem.
Remember that an IP host only needs to worry about getting a packet to the next hop
along the line; by definition that has to be a station that the host can talk to directly.
That host could have any hardware address; it could be reached via a radio link, or
perhaps via an Ethernet segment inside a ham’s house. A protocol called ARP (Address
Resolution Protocol) finds the correct hardware address, whatever the nature of the
hardware in use.

ARP is the tool that puts IP addresses together with hardware addresses on a local
network. Figure 4-6 shows how it works in the simplest case. n8ur wants to send a
packet to ke8tq. It knows that ke8tq’s IP address is 44.71.36.18, and it knows that ke8tq is
on the local network (because ke8tq’s network number is the same as n8ur’s), but it
hasn’t a clue what the hardware address is. So, n8ur sends an arp request – a packet

47

Routing

addressed to the local network as a whole – using a special broadcast address that all
stations listen for.4-3 My arp request says, in effect, “Hey, I’m looking for 44.71.36.18.
Are you out there?” ke8tq hears this packet and replies, in a packet addressed to n8ur,
saying “Here I am. My hardware address is KE8TQ.” Now, n8ur knows how to reach
ke8tq, and the dialog can continue.

4-3 An arp request is sent to an IP address with a host part that’s set to all binary 1s — for an 8 bit host part, that’s
255, and (on ham links) a hardware address of QST. These two special addresses indicate that the message is
intended for all the hosts on the network.
4-4 Unlike hostname/IP address maps, IP address/hardware matches are not stored in a disk file – change too
often (for example, changing an Ethernet board automatically changes the associated hardware address) to make
a disk-based cache worthwhile.

For efficiency, NOS keeps a cache of recently used IP address/hardware address
mappings in memory4-4, so this process doesn’t have to be repeated each time two hosts
want to talk to each other. You can also manually add entries to the arp table through
AUTOEXEC.NOS or the NOS command line. This is useful to speed things at startup
(though you must remember to update these entries if the addresses changes), and is
necessary when NOS is communicating via digipeaters or NET/ROM nodes. JNOS
and TNOS also offer a feature called arp eavesdrop that, if enabled, will pick up ARP
requests and replies that are passed between other hosts on the channel and add them
to the arp cache. That avoids the initial arp exchange.

Host 1
44.71.36.17

n8ur.ampr.org

to broadcast address:
QST: who is 44.71.36.18 de n8ur

Host 2
44.71.36.18

ke8tq.ampr.org

Hello 44.71.36.17
I am 44.71.36.18

de ke8tq

(add 44.71.36.17 n8ur to ARP cache)

Sends data for
44.71.36.18 to ke8tq

(add 44.71.36.18 ke8tq to ARP cache)

Figure 4-6 - ARP

48 Chapter 4

PART 1 – Understanding TCP/IP

When a packet needs to go through a switch to reach a remote network, the process is
similar, as shown in Figure 4-7. When n8ur wants to send a packet to a host on another
network, say k1lt (a host in Columbus, Ohio), its default route tells it that all non-local
packets should go through w8apr. If it doesn’t already have an entry in its arp cache,
n8ur will send an arp request looking for w8apr, will get a response, and will then send
its packets for k1lt to the switch. w8apr will look at its routing table and find that the
next hop on the backbone toward Columbus is w8cqk, and will send an arp request on
the backbone to find the hardware address for that host. And so on and so forth, until
the last switch is ready to deliver the packet to the destination host and does a final
round of arp’ing to make the delivery.

Remember this: ARP and hardware addresses are only important within a single
network, among machines that talk to each other directly. Hardware addresses are a
purely local concern on an IP network. IP addresses span the network end-to-end;
hardware addresses only matter hop-by-hop.

44.71.12.21
k1lt

44.71.36.17
n8ur

44.71.36.2
W8APR

A B

• Packet for 44.71.36.17
• route is via gateway
• ARP to gateway
• packet sent to gateway

• Packet for 44.71.12.21
• route is via gateway
• ARP request to gateway
• packet sent to gateway

BA
44.71.12.7
W8CQK

ARP ARP

Figure 4-7 - ARP example

49

Routing

Tricks with ARP

There are a couple of ways that ARP can be stretched to handle unique situations.
First, think of two stations that are on the same subnet, but which can only talk to each
other via a (yechh!) AX.25 digipeater. If W8APR sends out an arp request for K8GKH,
the digipeater won’t retransmit it (because the request is addressed to QST and isn’t
sent with a digi string), so K8GKH will never get the request, and will never respond.

To get around this problem, two things must happen: first, NOS must be told the
hardware address of the distant host, and second, it must be told to use a digipeater to
reach that hardware address. A manual entry to K8GKH's arp table takes care of the
first problem:

arp add [44.71.36.32] ax25 W8APR vhf

This command has the same effect as an arp reply; it adds the match between
[44.71.36.32] and to the host’s arp table. Next, the ax route add command

ax route add N8KZA vhf N8ACV

tells NOS that N8ACV is reached on the vhf interface via the N8ACV digipeater
(K8GKH will have to add a similar pair of commands at his end). A similar concept
works for IP routing over NET/ROM. Figure 4-8.

A second trick comes in handy when it’s useful for one host to pretend that it has the
hardware address of another. For example, let’s say K8GKH has two NOS systems
running at home, connected together via an Ethernet as shown in Figure 4-9. One system
has radios hooked to it, while the other provides user services like ftp. As the figure
shows, rf-k8gkh (44.71.36.33, hardware address k8gkh) serves as a gateway for ftphost

(44.71.36.222), so to reach ftphost each user would normally have to add a specific route
that identified rf-k8gkh as the gateway used to reach k8gkh:

route add 44.71.36.32 vhf 44.71.36.33

50 Chapter 4

PART 1 – Understanding TCP/IP

k8gkh

n8ur

WB8GXB
Digipeater

Problem: Digipeaters don't pass ARP requests

k8gkh

n8ur

WB8GXB
Digipeater

ARP add 44.71.36.32 ax.25 k8gkh vhf
ax route add k8gkh vhf WB8GXB

ARP add 44.71.36.17 ax.25 n8ur vhf
ax route add n8ur vhf WB8GXB

Solution: Manual ARP add AX Route statements at
each end allowing connectivity

through the digipeater

Figure 4-8 - Manual ARP

Figure 4-9 - Proxy ARP

ke8tq-2
44.71.36.18

n8ur

route add default eth0 44.71.36.33

QST -
Who is 44.71.36.32

rf-k8gkh
44.71.36.33

route add 44.71.36.32
arp publish 44.71.36.32 ax25 k8gkh vhf

(lying) I am 44.71.36.32
de k8gkh

Ethernet

add information
to system

51

Routing

It would be nice if users didn’t have to add a route to be able to reach a single host
who’s hiding behind a “front end” like rf-k8gkh. What if rf-k8gkhcould, for the purposes
of arp, pretend that it was k8gkh, and respond to arp requests for k8gkh? Then, users
wouldn’t need a special routing command — they could arp k8gkh, and rf-k8gkh would
reply. The user would then send packets to rf-k8gkh, and it would forward them on to
k8gkh transparently.

The proxy arp (sometimes called promiscuous arp) function does this. Issuing the
command to rf-k8gkh

arp publish 44.71.36.32 ax25 K8GKH vhf

instructs that station to respond to any arp request it hears on the vhf interface for
k8gkh giving K8GKH as the hardware address. In other words, at the data link layer rf-

k8gkh pretends to be k8gkh and tricks other systems into sending k8gkh’s data to it. In
this example that’s a good thing, as it makes the Ethernet between the two systems
invisible to the rest of the network. Proxy arp can be used for Evil Purposes (by capturing
packets bound for a legitimate host), or it can inadvertently screw up a network (two
hosts responding to the same arp request can cause quite a bit of confusion!), so it’s best
to be very careful when playing this trick.

A Routing Example

Well, that was all about as clear as mud. An example will help show how routing
works in practice.

First, let’s refresh some definitions. Hosts on a local area network can all communicate
directly with each other. The hosts address each other locally using hardware addresses.
One (or more) hosts on the network may act as switches or gateways, meaning that
they know how to reach other networks. IP addresses contain network information
that can help guide packets to the next hop on the way to their final destination. Hosts
set up routes that use the netid and netmask to define where packets go.

52 Chapter 4

PART 1 – Understanding TCP/IP

Let’s set up a simple network to use in this discussion. It’s shown in Figure 4-10. Our
local network is in Dayton, Ohio and has been assigned the network/subnetwork
number 44.71.36.0/24. All the hosts connecting to this network have 44.71.36 as the
first three bytes of their address; since the netmask is 24 bits (3 bytes) long, the last byte
is used to identify each host, and that’s the only byte that will be different in each IP
address on the network.

However, local activities takes place on both 2 meters and UHF, so we’ve further
divided our subnet by using one more bit to identify the LAN a host is on. Adding that
bit means that internally (on the local side of the gateway) the netmask is actually 25
bits.

Let’s take a deep breath while figuring out what that means. That 25th bit is the
leftmost bit of the fourth byte — the byte we think of as the hostid. If you can count in
binary (just pretend you only have two fingers), you’ll see that this “subnetmask” bit
represents “128.” If one subnet is represented by this bit being turned off, that means
the hostids on that net can range from 1 (“00000001”) to 126 (“01111110”); the other
subnet has the bit turned on, so its hosts can be in the range of 129 (“10000001”) through
254 (“11111110”)4-5. For this example, let’s say that the first subnet is used on the VHF
LAN, while the second subnet is used for UHF.

Our club station, w8gps, is on UHF with an IP address of 44.71.36.133. Fred’s station,
ke8tq, is on VHF with an IP address of 44.71.36.18. Our gateway, w8apr, is on both VHF
and UHF, and has an address on each LAN—44.71.36.1 on 2M, and 44.71.36.129 on
UHF. It also has a third interface to another network, the 44.71.1.0 network that connects
together the various switches in Ohio on a backbone. Its address on that interface is
44.71.1.9. Let’s assume that once a packet hits the 44.71.1.0 network, it can be routed to
anywhere in the world by one or more gateway stations on that network (boy, I wish
that were true!). For good measure, we'll also include a few other stations to illustrate
concepts we've talked about.

4-5 Remember, hostids that have "0"s or "1"s in all their bit positions are reserved.

53

Routing

N
E

TR
O

M
 N

et
w

or
k

D
ay

IP
: W

8R
M

J

w
8g

ps
44

.7
1.

36
.1

33

44
.7

1.
36

.1
30

ke
8t

q
44

.7
1.

36
.1

8

n8
xj

a
44

.7
1.

36
.4

k8
gk

h
44

.7
1.

36
.3

2

W
B

8G
X

B
D

ig
ip

ea
te

r

w
8a

pr
44

.7
1.

36
.1

19
20

0
ba

ud
U

H
F

us
er

s

44
.7

1.
36

.1
29

Th
e

re
st

 o
f

am
pr

ne
t 44.71.36.1

44
.7

1.
37

.2

k1
lt

44
.7

1.
12

.2
1

44
.71

.12
.1

CMHIP
:n

8e
m

r

C
ol

m
bu

s
LA

N

Fi
gu

re
 4

-1
0

- O
ur

 N
et

w
or

k

54 Chapter 4

PART 1 – Understanding TCP/IP

n8ur and ke8tq each need to have two routes defined: one handles packets going to
local hosts, and the other packets going everywhere else. The first route says, “send
any packet with a network address in the range of 44.71.36.1 through 44.71.36.127 out
via the radio port, and assume that you can reach that host directly,” and the second
says “send everything else via the radio port to w8apr; he’ll know what to do with it.”
This second route is the default route—it’s what the system uses when no more specific
route exists.

A switch is simply a host with two or more interfaces, and routing commands that
ship packets from one interface to another based on IP addresses. So, w8apr has routes
that are a bit more complex than a host with a single interface. It needs one route to
handle traffic on the local network. It needs a route for each switch on the backbone
network that feeds another local network. And, it needs one to reach the gateway on
the backbone that connects to all those far away places.

Now you know how basic IP routing works. What I’ve described is called static
routing, since it relies on manually entered routes that don’t automatically change. There
are a couple of protocols that do dynamic routing that is updated automatically as the
network changes — hosts running these protocols send routing broadcasts to update
each other with connectivity information.

The best known of these are RIP and RSPF. RIP (Routing Information Protocol) is a
standard IP protocol that’s widely used in Ethernet LANs. It’s included in all NOS
implementations (though frequently it’s not compiled into distribution binaries). If
implemented properly, RIP can be useful in ham networks that span multiple channels.
However, few amateur networks have used RIP on a wide scale.

RSPF (Radio Shortest Path First) is a protocol designed specifically for the ham radio
environment, and it’s also available within NOS. Although it has great potential, the
current implementation has some serious problems that make it impractical for real-
world use. These problems are intimately connected with NOS’ design philosophy,
and it may be difficult to work around them.

I won’t discuss RIP or RSPF further here, though if you’re trying to design a TCP/IP
network using “best practices,” you should look at RIP as a potential part of your plans.

55

Chapter

5
Installing NOS: The Beginning

Part 2: Installing and Configuring NOS

Frankly, there’s no completely painless way to get NOS running on your computer.
That’s because there are infinitely many configurations of hardware, software, and
services that hams put together for their systems. That means there are a number of
custom parameters that you must set to teach the program about your environment
and your network. In addition, NOS uses quite a few directories and files, and they all
need to be in the right place

But don’t give up! You, too, can master the secrets of NOS setup. It’s mainly a matter
of screwing up your courage to edit a configuration file called AUTOEXEC.NOS (older
versions may call the file AUTOEXEC.NET instead; use whichever name is appropriate
for your version). Getting the right commands in the right places in AUTOEXEC.NOS
is most of the work; setting up a few other simple configuration files set up will take
you the rest of the way to IPville.

Obtaining NOS

The best way to obtain a copy of NOS is via the Internet. The web page at
http://www.tapr.org/tcpip has pointers to the homes of TNOS and JNOS, as well as
other information5-1. When you get to the archive site, you'll probably find several
versions to download. Which one(s) do you need ?

5-1 What if you don't have Internet access ? TAPR offers versions of JNOS and TNOS on CDROM. Contact
TAPR for details. http://www.tapr.org

56 Chapter 5

PART 2 – Installing and Configuring NOS

JNOS changes version numbers relatively slowly. Version 1.10 lasted for several years,
and 1.11A is current as I write this. Incremental updates are identified by a letter tacked
on to the version number. There are also beta releases which include the letter "X"
followed by a number (for example JN112X1.EXE is beta release 1 of the upcoming
version 1.12). Look for the highest number and letter version at the site, but you should
probably avoid the "X" beta versions until you've been around the block once or twice.

When you find the version you want, you will probably see three files with names like
"JNOS11A.EXE", "JNOS11A.ZIP", and "DOCS11A.ZIP". Normally, the ".EXE" file is the
executable JNOS program, while the ".ZIP" file is a PK-zipped archive of the source
code. Documentation and other supporting materials are packaged separately in the
"DOC111A.ZIP" archive; the documentation package also includes the files necessary
to enable the on-line help system. You should get the ".EXE" and documentation files to
begin with. There may be additional files available that contain auxiliary programs and
tools; you might want to grab those as well.

TNOS follows a somewhat similar scheme, but beta versions aren't made generally
available. Huge changes are signified by a change in the first digit of the version number,
major changes by a change to the second digit, and interim releases (usually to fix a
significant problem, but not adding functionality) by change in the third digit. There
are separate directory trees at TNOS ftp sites for the UNIX and DOS versions of the
program. The TNOS DOS directory contains source code in zipped file, and an executable
version and supporting files in a self-extracting .EXE file. There will probably be a
separate documentation file at the ftp site, but the TNOS230.EXE file includes basic
documentation and sample setup files.

If you're working with JNOS, put the executable file somewhere in your DOS PATH
and run the file (you'll probably want to remove it to something shorter, like JNOS.EXE).
If you're using TNOS, extract the files from your root directory using a program like
PKUNZIP with the "-d" command to create subdirectories. Either way, you'll end up

57

Installing NOS / Part 1 – The Beginning

with all the necessary directories created for a default installation. TNOS will also install
sample configuration files which you'll need to edit, while JNOS leaves you to create
your own files.

To see if everything is properly installed, make sure the executable program is in your
PATH, change to the root directory,and type the file name at the DOS prompt. You
should see a startup screen and probably a bunch of error messages. That's okay for
now. Finally, you should see a prompt like nos> on your screen. Congratulations; it
works! To leave NOS and return to DOS, type exit and then hit the enter key.

Once you have the NOS program installed and the directory structure created, you're
ready to start editing the configiration files.

Do I Need to be a Programmer to Configure NOS?

If you follow the messages on packet radio or in Usenet newsgroups about NOS, you
may think that compiling NOS from source code is a necessary part of configuration.
It’s not. Although all the popular varieties of NOS are available in source code form
and you can compile them yourself, you probably don’t need to do that, because they
are also available pre-compiled for download via Internet or BBS. Appendix C lists
some of the places you can find current versions.

These executable files typically come in two or three flavors, each suited for a different
set of user needs. One may be designed for an end-user station, while another may
include the complete PBBS mailbox code. The chances are that one of them will work
for you. If you’re planning to run a typical NOS user station with an external TNC and
no unique services, a precompiled NOS will almost certainly work just fine. If you
want to “roll your own” after you get your feet wet, Chapter __ will show you how.

58 Chapter 5

PART 2 – Installing and Configuring NOS

Files and Directories

NOS uses a bunch of files and directories for its configuration and working data.
There used to be only a few, but with the addition of features, and particularly increased
BBS functionality, the list of files has mushroomed.

Current versions of JNOS will create their own directory tree when you run them for
the first time. If you want to set things up manually, you should create the following
directories on your disk:

spool\ (holds NOS’ working files)

spool\help\ (help files for the mailbox)

spool\mail\ (mail messages go here)

spool\mqueue\ (mail workfiles)

spool\rqueue\ (used by external mailer programs)

finger\ (home for finger info files)

public\ (file uploads/downloads)

By default, the JNOS directory tree must be under the root directory of your default
disk (e.g., under C:\), and NOS will look for its primary configuration files in the root
directory (e.g., C::\AUTOEXEC.NOS). You may want to put all your JNOS files and
directories in a single directory (perhaps \nos) to keep you disk more orderly. You can
do that in two ways.

If you start JNOS using the -r switch you can specify a new root directory:
nos -r c:\nos will cause NOS to look for its configuration files and directory tree
under the \nos directory. Under TNOS, the command line switch -d does the same
thing (e.g., tnos -d c:\nos).

Alternatively, you can use the DOS assign command to assign a drive letter to the
NOS directory, and then switch to that new drive letter to run the program. Either way
works; I prefer to use the JNOS command line switch.

59

Installing NOS / Part 1 – The Beginning

Recent versions of TNOS use a somewhat different directory structure than JNOS:
etc/ (config files)

etc/help/ (Mailbox help file directory)

finger/ (Finger info directory)

public/ (Public directory)

spool/ (Spool directory)

spool/log/ (log directory)

spool/mail/ (Incoming mail)

spool/mqueue/ (Outgoing mail spool)

spool/rqueue/ (queue for router)

spool/signatur/ (Mail signature file directory)

spool/stats/ (Statistics directory)

Appendix K includes a complete TNOS file list, including some additional directories
that are required by advanced TNOS features. You don’t need to manually create these
directories; the TNOS installation program will create the required ones for you. In
JNOS and earlier versions of TNOS, the main configuration files need to go in the top-
level directory of your default disk (either the root directory, or the one you’ve identified
with a command-line switch):

AUTOEXEC.NOS (the NOS configuration file)

FTPUSERS5-2 (optional; user ftp/mbox access)

DOMAIN.TXT (hostnames)

BM.RC (optional; mailer configuration)

ALIAS (optional; used by smtp and the BM mailer program)

With TNOS’ recent change in directory structure, the ALIAS and FTPUSERS files have
moved into the etc directory, and DOMAIN.TXT now goes in the spool directory.

5-2 In version 2.30, TNOS renamed the FTPUSERS file to SECURITY. The file format is unchanged. For this
book, I'll continue to call it FTPUSERS.

60 Chapter 5

PART 2 – Installing and Configuring NOS

NOS uses one executable file, and optionally a standalone mail program (the most
common one is called BM, and it’s included with some NOS distributions. Another
common mailer program is call PCELM. These files can be installed anywhere on your
file path:

NET.EXE or NOS.EXE (main executable file)

BM.EXE or PCELM.EXE (mailer program)

An Introduction to AUTOEXEC.NOS

AUTOEXEC.NOS is the key to making NOS work. It can range from fairly simple to
very complicated, depending on the combination of hardware and services you need.
Although both JNOS and TNOS now have tools available (described later in this chapter)
to automatically generate the AUTOEXEC.NOS file for you, understanding the structure
of this master configuration file is worth the effort – the automated tools aren’t perfect,
and you’ll probably need to dig into the file sooner or later to customize things for your
installation. Bear with me while we walk through AUTOEXEC.NOS.

Commands in AUTOEXEC.NOS fall into seven broad categories:
• Basic commands to define internal parameters like memory usage.
• System wide commands.
• Global protocol-specific commands, subgrouped into commands for AX.25, IP,

TCP, UDP, and NET/ROM.
• Hardware-specific commands that define and configure each interface.
• Server-related commands that start and configure the various services NOS has

to offer.
• Local configuration commands
• Comments

The order of commands is important, and you may get unexpected results if things
are out of order. It’s generally best to put the NOS internal commands first, followed by
basic information like your callsign, primary IP address, domain, etc. Then, set the

61

Installing NOS / Part 1 – The Beginning

default protocol parameters. Next, start those servers that don’t require info about
specific interfaces (that’s most of them) and set their parameters. After that, attach the
hardware interfaces and set any protocol parameters on a per-interface basis. Finally,
start the remaining servers and include commands that are tied to specific interfaces.
Comments begin with the # character and may be included anywhere in any NOS
configuration file; NOS will treat anything from the # character to the end of line as a
comment. Although you can put comments on the same line as a command in
AUTOEXEC.NOS, I don't recommend it – there have been reports that doing so can cause
problems. It's best to put commands on separate lines.

Global versus Per-Interface Commands

It’s the second-to-last rule that catches people unaware, and a brief digression here
may save you lots of head-scratching later. NOS gives very precise control over things
like packet size, retry interval, and all the other low-level stuff that makes packet radio
work efficiently. These parameters all have built-in defaults that may or may not be
reasonable in your case. You can override the defaults with a command like
ax25 paclen 128 (which sets the AX.25 “paclen” parameter to 128). This is a global
command that affects all the interfaces on the system; if you enter the command as
shown, it will update the global paclen setting for all the radio interfaces on the system.

You can also specify a different paclen for each interface. For example, the command
ifconfig vhf ax25 paclen 256 will set paclen for the interface named vhf to 256,
while leaving the other ports’ paclen settings alone.

The catch is that the global setting will only “stick” to interfaces configured after the
global value is set. In other words, you need to set all global parameters before you
attach interfaces that use those parameters. That means that your AUTOEXEC.NOS
file should be structured with the global settings appearing ahead of the interface
configuration commands, which should be as close to the end of the file as possible.5-3

5-3 It also means that issuing a global parameter change from the NOS command prompt won't work. If you want
to change things on the fly, you need to make the change for each interface separately by using the ifconfig
command.

62 Chapter 5

PART 2 – Installing and Configuring NOS

Command Structure

NOS has lots of commands, and many of them have several layers of subcommands.
Most can be issued either in AUTOEXEC.NOS, or from the NOS command line. To see
what commands are valid in your version of NOS, type a ? at the NOS> prompt. To see
the subcommands for a command type the command name followed by a question
mark: ax25 (you can use the same process to see subcommands of subcommands ax25

timertype). TNOS and JNOS also offer a help command that will (if the help files are
installed) display a screenful of information about a command. To use it, enter help

<command name> at the NOS prompt.

Some commands can be abbreviated to save typing; the degree of abbreviation allowed
depends on the command set of the NOS version you’re using. Experimentation is the
best way to see what works and what doesn’t. One minor annoyance in some older
NOS versions is that command line input is case sensitive, and commands must be
entered in lower case—“ip hostname n8ur” is fine, but “IP Hostname n8ur” isn’t. That’s
a byproduct of TCP/IP and NOS having strong ties to the UNIX world, which is case-
sensitive and where lower case command and file names are the norm. In fact, many of
the commands used in NOS are the same as their UNIX counterparts, and by learning
NOS you’re starting on the way to learn UNIX! The bottom line is that it’s safest to do
all your NOS commands and keyboarding in lower case.

Another potential “gotcha” is that the format of commands that turn features on and
off isn’t consistent. In some older versions, a command like ax25 hport <interface>

(don’t worry about what that means!) toggles the state of the command—if it was on,
entering the command will turn it off, and vice versa. In other versions, entering
ax25 hport will display the current status of the command, but not change it. To do
that, you’d enter ax25 hport <iface> on or ax hport <iface> off.

63

Installing NOS / Part 1 – The Beginning

NOS Callsigns

Originally, NOS systems used and responded to a single amateur callsign. As services
and protocols were added, a deficiency in the basic AX.25 protocol caused a problem:
NOS had no way of knowing whether an incoming packet requesting a new session
was an IP frame that should be passed to the IP layer, an AX.25 frame that should go
directly to the mailbox, or a NetROM frame that should be passed to the NetROM
subsystem. Only when a second packet was received could NOS tell what the data
protocol was.

This meant that an AX.25 user connecting to a NOS system didn’t get any response
(other than her TNC’s “connect” message) until she hit the return key to send another
packet. Then, NOS could tell that the data was coming from an AX.25 user, and fire up
the mailbox greeting and prompt. As JNOS became more commonly used as a PBBS
system, this became a real pain, so WG7J introduced the idea of using a separate callsign
(or the same callsign with a separate SSID number) for AX.25 connections.

In other words, I might use N8UR-5 as my “ax25 mycall” but N8UR as the “ax25
bbscall”. Users connecting to N8UR would go right to the mailbox prompt without
having to hit a carriage return first.

It turns out this idea works very well, and it has mushroomed in JNOS and TNOS to
the point where you can identify many callsign/SSIDs for a single system. The “SSID”
is the Secondary Station ID that follows the callsign – in “N8UR-5”, the SSID is 5. Values
from 1 through 15 are valid.

64 Chapter 5

PART 2 – Installing and Configuring NOS

The calls and aliases supported under JNOS (as of version 1.11a) are:
ax25 mycall # link address for all ports

ax25 alias # ax25 or netrom alias

ax25 bbscall # like the alias; connects you

to the mbox without hitting CR

ax25 ttycall # immediate connect to

split-screen session

ifconfig <iface> linkaddr # unique address for a

port to use for digipeating;

by default, same as

ax25 mycall

ifconfig <iface> cdigi # unique address just for

cross- port digi – no connects

allowed to this call

netrom alias # same as ax25 alias

netrom call # callsign for netrom

TNOS offers even more callsigns to reach various servers. As of version 2.30, they are:
ax25 mycall # link address for all ports

ax25 alias # ax25 or netrom alias

ax25 ttycall # immediate connect to

split-screen session

ax25 infocall # call for info server

ax25 newcall # call for news server

ax25 tutorcall # call for tutorial server

ax25 rosecall # call for ROSE switch

ax25 user # call used for outbound ax25 connections

convers call # callsign for convers server

forward mycall # callsign for bbs forwarding

ifconfig <iface> linkaddr # unique address for a port

to use for digipeating; by

default, same as ax25 mycall

netrom alias # same as ax25 alias

netrom call # callsign for netrom

65

Installing NOS / Part 1 – The Beginning

You don’t need to explicitly set all these calls in your system, but there are a couple
that are important. If you are using the PBBS (mailbox) system in NOS, you particularly
need to make sure that the ax25 bbscall (JNOS) or forward mycall (TNOS)
callsign/SSID is different than the ax25 mycall. Your callsign configuration is one of
the first things to check if users report difficulty connecting to your mailbox or other
non-IP service.

A Basic AUTOEXEC.NOS File

Now that we’ve gone through the theory, let’s get our hands dirty and build an
AUTOEXEC.NOS file. Appendix C includes a basic, but workable, file skeleton, and in
this chapter we’ll fill in the blanks. When we’re finished, you’ll have a minimal
AUTOEXEC.NOS to get started with. These are the entries you’ll have to customize.

Your hostname in FQDN format (assigned when you get an IP address from your
local coordinator), your assigned IP address, and your callsign (optionally including an
SSID, but local customs vary on this):

hostname n8ur.ampr.org.

ip address 44.71.36.17

ax25 mycall N8UR

If you have a domain name server, add a command near the beginning of your
configuration file identifying its IP address:

domain addserver 44.71.36.133

NOS uses a command called attach to configure your serial port or other hardware
and link it to a named interface. These commands include specific hardware
configuration information like I/O ports and interrupt numbers and can get quite hairy;
see the next chapter for many more details. For a TNC in standard KISS mode on COM
1 with a 4800 baud serial port speed, use:

attach asy 0x3f8 4 ax25 vhf 1024 256 4800

66 Chapter 5

PART 2 – Installing and Configuring NOS

5-4 It's best to refer to other hosts in AUTOEXEC.NOS by IP address rather than hostname. That way, you'll be
able to reach them even if you don't have a DOMAIN.TXT file or domain name server available at startup.

The “vhf” in the middle of the command is the interface name—you use it as a “handle”
to identify this port to NOS when you set up routing commands and the like. You can
use any (short) name you’d like. Many people use names like “ax0” and “ax1,” which
mimic the device names used by UNIX systems, but I prefer to use an interface name
that has some relationship to the interface’s use, like “vhf” or “uhf”.

You’ll also need at least one routing command, and possibly a second one. If you
have no switches available to reach other subnets and all your local activity is on a
single frequency, then all you need is this (assuming your interface is named “vhf”):

route add default vhf

If you have a switch or gateway that routes packets to other networks, you should
add the IP address of the switch to the end of the default route command:

route add default vhf 44.71.36.2

This command tells NOS to route all packets to the switch at the indicated IP
address5-4, which is reachable via the vhf interface. If you have a gateway route like this,
you’ll need a second route for the local hosts you can directly reach:

route add 44.71.36.0/24 vhf

You'll recall that the “/24” refers to the leftmost 24 bits (3 bytes) of the address are the
netid that should be checked for routing information. This route tells NOS to send all
packets with a destination IP address that has “44.71.36” as its first three bytes (in other
words, hosts that you can reach directly) straight out the vhf interface without going
through a gateway.

Finally, start some servers; the list will be determined by the services you want to
offer. You’ll probably want to start the smtp server so you can receive mail, and you
also need to set the smtp timer so that your system will send out mail that you create.

67

Installing NOS / Part 1 – The Beginning

The smtp quiet command determines whether the console bell will ring when new
mail arrives:

start smtp

smtp timer 600

smtp quiet on

You’ll probably want to let people connect to your system to leave you messages using
the mailbox, so you’ll want to set a callsign that hooks directly to the mailbox. As
discussed above, you need a different call/SSID for this because the “ax25 mycall” is
the general callsign for your system, and connections to it won’t get the mailbox prompt
until a second packet arrives. Since this is a TCP/IP system, after all, you’ll also want
people to be able to reach the mailbox via telnet, so start that server, too:

ax25 bbscall N8UR-3 # JNOS only

forward mycall N8UR-3 # TNOS only

start ax25

start telnet

If you want people to be able to “beep” you with the “O”perator paging command,
issue the command:

mbox attend on5-5

If you want folks to be able to connect directly to you in a split-screen chat mode, start
the ttylink server, and assign a callsign/SSID for users to use to make such a connection:

ax25 ttycall N8UR-4

start ttylink

5-5 In TNOS version 2.30 and later, the "mbox" command has been changed to "pbbs".

68 Chapter 5

PART 2 – Installing and Configuring NOS

If you’ve set up a public/ directory for ftp file upload and download, and set up
permissions in FTPUSERS (more on that later), you will want to start the ftp server:

start ftp

If you’ve configured a finger/ directory and created finger files, start that server:

start finger

Starting the echo server will let people use the ping command to see if you’re alive:

start echo

These are the basic commands to configure your NOS system. Appendix C is a very
detailed AUTOEXEC.NOS template from N5KNX; it describes in detail how you might
configure a full-blown system, and is full of comments to explain things.

Fast Relief for Headache Sufferers

Versions of TNOS 2.02 and later include a configuration utility (MKCONFIG.TCL) that
will create a pretty reasonable AUTOEXEC.NOS file for you, based on your answers to a
few configuration questions. It’s included with the TNOS distribution package. You
may still want to tweak the file, but it will give you a good starting point Generating a
new configuration file with MKCONFIG.TCL when you get a new version of TNOS is a
good idea to ensure that you’ve kept up wtih changes in command names or syntax.
There are also “plug and play” kits for JNOS. There have been a couple of installation
programs written for JNOS. One that is relatively current is INSTJNOS by David Fraser,
ZL3AI. It is available from the ftp.tapr.org site, and works with JNOS version 1.11.

69

NOS supports a number of versions of the attach command to deal with different
communications hardware. I’m discussing them here because you use these commands
almost exclusively in the AUTOEXEC.NOS file, and they are without a doubt the most
cryptic commands in the NOS repertoire. Although NOS supports a number of different
hardware devices, each of which has its own attach syntax, only a few of the most
common ones are included in standard NOS compiles.

This chapter will describe the most common use of the attach command; configuring
a serial port to talk to a TNC, as well as two other commonly used hardware drivers,
and how to configure them. As usual, this discussion covers the basics; see the NOS
reference manual for details on all the many options that the attach command can use.

The most common use of NOS is probably to attach to a standard TNC via a serial
port. The asy version of the attach command does this. The syntax is:

attach asy <ioaddr> <vector> <mode> <if> <bufsize> <mtu> <speed>

Chapter

6
Installing NOS: Hardware

Part 2: Installing and Configuring NOS

70 Chapter 6

PART 2 – Installing and Configuring NOS

In English, these parameters are:
ioaddr the address of the COM port being used. COM1 is usually 0x3f8 and COM2

is usually 0x2f8. COM3 and COM4 usually use 0x3e8 and 0x2e8 respectively,
but these aren’t completely standardized; if you use one of these ports you
should check the documentation for your serial card to be sure.6-1

vector the IRQ used by the hardware. COM1 and COM3 are usually 4, and COM2
and COM4 are usually 3. Again, COM3 and COM4 may vary, and you
normally won’t be able to use two COM ports that share the same interrupt
at the same time. In other words, don’t try putting TNCs on COM1 and
COM3 if both ports use IRQ 4.

mode this specifies the nature of the interface. ax25 is for a connection to a KISS
TNC, slip is for a hardwired connection to another host, ppp is for a dial-up
connection, and nrs is for attaching a NOS station to a NET/ROM node stack.

if the interface name. Any short name can be used. In the UNIX world,
interface names are usually like ax0 — two letters identifying the interface
type, followed by one digit identifying the specific interface. I prefer
something that has more meaning, like vhf for a radio interface on 2 meters.

bufsize the buffer for incoming data, in bytes. A value of 1024 is usually more than
sufficient for a 1200 baud channel. The bufsize should always be at least as
large as, or larger than, the mtu (discussed next).

mtu the maximum transmission unit size, in bytes. For 1200 baud channels, or
any routes that may travel over a digipeater or NET/ROM, a value of 256 is
appropriate. The mysteries of mtu are discussed in detail in Chapter 8.

speed the speed of the serial (not radio) link, in baud. The best setting for this will
depend on the speed of your computer, but generally two to four times the
radio speed is adequate.

6-1 If you are using JNOS or TNOS under Linux, you don't specify the physical hardware address or interrupt
number. Instead, give the device name instead of the address, and use a "-" character instead of an interrupt.
For example: attach asy /dev/ttyS1 - ax25 vhf 1024 256 4800.

71

Installing NOS / Part 2 – Hardware

Some sample attach asy commands are:
COM1, KISS TNC as vhf, MTU 256, 4800 BAUD

attach asy 0x3f8 4 ax25 vhf 1024 256 4800

COM2, KISS TNC as uhf, MTU 128, 2400 BAUD

attach asy 0x2f8 3 ax25 uhf 1024 128 2400

The most common use for a serial port in NOS is to drive a TNC in KISS mode, but
COM ports can be used for several other purposes as well. NOS can talk to NET/ROM
stacks and multi-port TNCs via the serial port, can interface to a modem or dumb
terminal, and can talk to two other Internet protocols, SLIP and PPP. The SLIP protocol
is worth a few more words here. SLIP stands for Serial Line Internet Protocol and it can
be used to hook two TCP/IP hosts together via their serial ports. If you want to put
another NOS computer on your home network, you can do it with SLIP. And, together
with proxy arp (which we talked about in Chapter 4), you can build a radio “front end”
to a computer that runs TCP/IP software under Windows or Linux.

To configure a serial port to use SLIP, use a command like this:
SLIP link, COM1 as sl0, MTU 256, 9600 BAUD

attach asy 0x3f8 4 slip sl0 1024 256 9600

There’s a “gotcha” to watch for when using SLIP links: to improve throughput over
slow links, some systems use a technique called “Van Jacobson header compression”
which reduces the header overhead. NOS supports this feature, and you enable it by
adding the letter “v” to the end of the SLIP attach statement. If you aren’t able to establish
communication with the other end of a SLIP link, make sure that both ends either are,
or aren’t, using header compression – a mismatch will cause the link to fail.

72 Chapter 6

PART 2 – Installing and Configuring NOS

Some TNC Issues

If you’re using a TNC to interface NOS to your radio, there are a couple of things you
should consider. Most of them relate to making the serial port link between the computer
and NOS work at its best.

The big issue is latency. This is the time that it takes for data to travel over the serial
link between the computer and the TNC. To minimize latency, the serial link should
run at least twice as fast as the radio link, and preferably four times the radio speed. At
1200 baud, this is no problem, but at higher speeds it can be difficult to make the serial
port keep up with baud rates you will want to use. Many TNCs only support serial
rates up to 9600 baud. Although NOS can support serial ports at up to 115,200 baud,
your system may not be able to reliably drive the port at this rate.

In particular, if your computer has common serial port hardware that uses an 8250 or
16450 UART chip (that’s the device on your serial port card that takes parallel data from
the computer’s bus and turns it into a serial data stream, and vice versa), you may find
NOS can’t reliably run the serial port at a baud rate of more than 9600 or even 4800
baud. You can determine whether your serial ports use an 8250 or 16450 UART by
running a diagnostic program such as MSD.EXE (which is included with Microsoft
Windows). Or, you can use the asystat command in NOS, which will tell you information
about your attached serial ports, including their UART type. If your PC has serial ports
that use these older chips, you can’t get any better bang-for-the-buck than replacing
them with a serial board that uses the 16550 or other buffered UART chip.

The 16550 is a $10 drop-in replacement for the more common 8250 or 16450 UART,
and it supports a first-in, first-out ("FIFO") buffer than makes a dramatic improvement
in serial port performance under NOS. NOS will automatically detect and support the
‘550 UART. A ‘286 class PC with one of the other UART chips may have trouble talking
to the TNC at more than 4800 baud. With a ‘550 installed, the same machine should
handle a speed of 19,200 baud or greater.

73

Installing NOS / Part 2 – Hardware

Although NOS will automatically detect and support the ‘550 UART, you can force it
to do so, or tune the performance (by adjusting the “high water” mark at which the chip
sends an “I’ve got data” interrupt to the processor) by adding “f <hiwater>” to the end
of the attach statement for that interface. <hiwater> can be a value of 1, 4, 8, or 14. The
default value is 4; I’ve found that on a busy system a value of 8 may provide better
throughput.

The original 16550 chip has a bug that keeps it from working properly. There aren't
many of those chips around, but if you're buying a serial board or chip, you should
make sure that the chip number has a letter suffix. In particular, seeing "16550AFN"
stamped on the chip is a good sign. Many serial cards today use ASIC chips that include
UART functionality. Surprisingly, many of them do not support the '550 buffers. It's
best to check the box and documentation for reference to "high speed" or – better yet –
"16550 emulation." Another popular UART chip is the 16650; it has even more buffering
than the '550, and will work fine with NOS.

Next, if you’re running at a radio speed of 9600 baud or faster, consider modifying
your TNC for better performance. TNC-2 clones normally operate at a CPU clock rate
of just under 5Mhz; by doubling the crystal frequency and installing higher speed CPU
components, the TNC can run at 10Mhz, offering better performance and an additional
bonus—a doubling of the indicated baud rates of both the radio and the serial ports.
This means that if your TNC could only operate at 9600 baud on the serial port before,
after modification it will support 19,200 baud. As I write this, PacComm offers a 10Mhz
CPU upgrade kit for about $25 that will work in PacComm Tiny-2 TNCs as well as
other TNC-2 clones.

There’s also another trick to improve the performance of a TNC-2 clone for high speed
operation. The GRAPES folks (developers of the WA4DSY 56kB modem) wrote a special
KISS-only EPROM for TNC-2s that is optimized for high speed operation. It can (just
barely) support a radio port speed of 56kB in a 10Mhz TNC-2, and it offers better timer
resolution—for example, you can set the TXDelay in 2.5 millisecond increments, rather

74 Chapter 6

PART 2 – Installing and Configuring NOS

than the 10ms that’s normal. This is useful in high speed systems where TXD settings
become critical to performance. We use KISS56 ROMs with TNC-2 clones in our local
19.2kB network, and they work very well. The KISS56 firmware code is available from
several ftp sites.

One last problem with KISS TNCs is detecting errors on the serial link. These are
usually rare, but the original KISS protocol doesn’t support any sort of error checking
over the link between the computer and the TNC. Such errors can cause strange problems
that are hard to diagnose. There are extended versions of KISS available that address
this problem (notably, one version written by G8BPQ and available with his software
distribution), and at least some distributions of NOS have drivers to support them.
You’ll need to check your NOS version to see which, if any, of these extended KISS
protocols it includes.

Setting TNC Parameters

KISS TNCs set their default values for TXDelay, Ppersist, and SlotTime at bootup, and
the PI card driver (discussed later) does the same. These defaults may not be appropriate
for your network, so xNOS lets you set your own values for them, as well as several
other parameters.

The asy driver allows you to update these defaults through the param command..
The driver for the Ottawa PI card provides similar support as well. By using the
command

param <iface> <param_id> value

you can set things like TXD, slottime, and ppersist. “Param_id” may be either a number,
or in recent versions of xNOS a name like “txd.” For example, issuing the command
param vhf txd 30 will tell the TNC attached to the vhf interface to set its TX delay to

75

Installing NOS / Part 2 – Hardware

a value of 30 (300 milliseconds). Remember that the update happens when the param
command is issued; if the TNC isn’t on-line then, it won’t get the word to change its
values. Since parameters are normally set in AUTOEXEC.NOS, it’s best to make sure
the TNC is powered up and initialized before you start NOS — that way you’ll be sure
NOS is able to update the TNC with the correct values at startup.

For KISS TNC’s, JNOS and TNOS support these parameter types:
Name Number Name Number

TxDelay 1 Group 12

Persist 2 Idle 13

Slottime 3 Min 14

TxTail 4 MaxKey 15

Fulldup 5 Wait 16

Hardware 6 Down 129

TxMute 7 Up 130

DTR 8 Blind 131

RTS 9 Return2 254

Speed 10 Return 255

EndDelay 11

The param command can also be used to configure serial port handshaking via the
RTS and DTR parameters. If you have trouble getting your TNC to communicate with
xNOS, try issuing param commands with the RTS and DTR values set to either 1
(handshaking on) or 0 (handshaking off).

There’s also another use for the param command: the command param <interface>
255 0 will drop the TNC out of KISS mode.

76 Chapter 6

PART 2 – Installing and Configuring NOS

NOS and Other Hardware

NOS supports other types of hardware. I'll describe the attach commands for two of
them: the “packet driver” interface that’s used with a variety of network cards and the
Ottawa PI high-speed packet interface card.

The Packet Driver

The packet interface is used to connect to Ethernet cards and other hardware that
supports the FTP, Inc. “packet driver” standard. This is a useful setup because packet
drivers are available for nearly every commonly used network interface card.

The packet driver is a Terminate-and-Stay-Resident (TSR) program for DOS. When
you run the program from the command line or a batch file, it loads into memory and
then returns you to the command prompt.

The driver talks to a hardware device like an Ethernet card.6-2 You use command line
parameters to configure things like the hardware address and interrupt number that
the card is using. These parameters are different for each driver, so you’ll need to look
at the packet driver documentation file for details specific to your hardware.

The DOS command invoking the packet driver must also set a software interrupt

number that’s used to identify the driver in the computer’s memory map, and to establish
the link between the driver and NOS. If you have more than one packet driver loaded
at once, you need to assign a unique software interrupt to each. The full command line
to load a packet driver can be lengthy, so avoid typing it all out each time you load the
driver by including it in a batch file (the AUTOEXEC.BAT file is probably best because
you will want to load the driver only once; you may as well do it when you boot the
system).

Most of the networking cards on the market have packet drivers available. There are
also packet drivers that provide a SLIP interface through a serial port, and a way to

6-2 A packet driver can also provide an interface to another software program.

77

Installing NOS / Part 2 – Hardware

interface NOS via a packet driver with the G8BPQ packet switch software running on
the same machine. There’s also a packet driver for the PI card which we’ve found may
work better than the built-in pi driver discussed later. In other words, the packet driver
interface gives NOS great hardware flexibility. There’s a complete set of drivers from
Crynwyr Software that’s available via ftp from many sites.

The syntax to attach a packet driver interface in NOS is:
attach packet <software interrupt> <if> <maxqueue> <mtu>

Remember that the software interrupt you supply here needs to match the one you
assigned to the packet driver when you loaded it into memory. A common value for the
software interrupt of the first (or only) packet driver is 0x60. maxqueue is the number
of packets (not bytes) that may be outstanding; values of 2 or 3 are typical. For Ethernet,
the standard mtu is 1500; for other types of hardware, use a value that makes sense for
the speed and reliability of the channel.

If you use the NOS packet driver, you’ll need to load the appropriate packet driver
TSR before starting NOS. The syntax varies from driver to driver, but in all cases you
need to make sure the software interrupt parameter for the driver matches the one set
in the NOS attach statement. The PI card packet driver includes lots of parameters that
set the card’s operating conditions. The syntax for the driver is:

pi <packet_int> [hw int] io addr] [dma] [baud] [txd]

[persist] [slot] [tail] [clock mode] [bufsize]

[number of buffers]

That’s a lot of parameters, but most have reasonable default settings, and the PI card
documentation provides more information about each. Note that the PI card’s operating
parameters are set when the driver initializes, and you can’t change them except by
exiting NOS, unloading the packet driver, and restarting it.

78 Chapter 6

PART 2 – Installing and Configuring NOS

The Ottawa PI Card6-3

The Ottawa PI card is a plug-in board for PCs. It’s designed for high-speed performance
in conjunction with external modems like the GRAPES 56kb system. It has two ports,
one a high-speed port that is DMA driven, which means it doesn’t have to generate an
interrupt to the computer for every few characters it receives or sends; and a lower
speed port that is interrupt driven for 1200 to perhaps 9600 baud rates. The current
version, the PI-2 card, has an optional built-in 1200 baud modem for the slow port. The
DMA port is capable of handling speeds greater than 56kb, and can do this even in a
fairly slow PC. The attach syntax is:

attach pi <ioaddr> <vector> <DMA chn> <mode> <name>

<bufsize> <mtu> <speed a> <speed b>

A sample attach command (using the PI’s default jumper settings) is:
attach pi card at port 380, IRQ 5, DMA 1

attach pi 380 5 1 ax25 uhf$vhf 1280 1024 0 1200

The PI card provides two interfaces, and this command names the primary interface
“uhf” and the slow one “vhf”. The “$” character separates the two names. If you’re not
using the second port you can detach it to save a bit of memory and overhead with the
command detach <slow interface name> after the attach command. The PI
attach syntax is explained in more detail in the manual provided with the card.

There’s a relationship between the bufsize parameter in the pi card attach statement
and the mem ibufsize parameter in AUTOEXEC.NOS. The setting of mem ibufsize
must be about 128 bytes larger than bufsize, or the driver won’t properly initialize. I
haven’t been able to figure out the exact size difference required, but a bufsize of 1280
with an ibufsize of 1440 seems to work fine.

6-3 PI Card kits can be purchased from TAPR.

79

Installing NOS / Part 2 – Hardware

The ifconfig Command

The attach command provides the initial setup for an interface. The ifconfig
command lets you set the AX.25 and TCP operating parameters separately for each
interface. This is particularly useful where you have both 1200 baud and higher speed
interfaces; the optimum parameters for one don’t work too well with the other, but
ifconfig lets you tune each interface for best performance. The basic syntax of the
ifconfig command is:

ifconfig <interface> <command> <value>

The command argument can be nearly any of the ax25, ip, or tcp protocol commands,
such as irtt, window, mss, etc., as well as several other options. The value argument
is whatever is appropriate for the command given. The ifconfig command provides
the flexibility to set operating parameters separately for each interface; this is very helpful
when one system is trying to support link layers as different as Ethernet and 1200 baud
NetRom.

In general, to set an interface-specific parameter, use this syntax:

ifconfig vhf ax25 irtt 3000

ifconfig vhf tcp irtt 4000

Another use for ifconfig is to set IP addresses and ax25 callsigns. To simplify routing,
hosts normally have a separate IP address for each interface. If you are running more
than one interface, you can set that interface’s IP address by using the ifconfig command
after the attach command (remember, if you use a global IP address, it must be assigned
before the interfaces are attached):

ifconfig <iface> ip addr <aa.bb.cc.dd>

You can also use the ifconfig command to assign a unique callsign/SSID to an interface:

ifconfig <iface> linkaddr <callsign>

80 Chapter 6

PART 2 – Installing and Configuring NOS

Finally, the ifconfig description command lets you add a descriptive identifier to the
interface; this description will show up when users list available ports with the mailbox
“p” command:

ifconfig <iface> <description>

If the description is more than one word long, it must be surrounded by quotation
marks: ifconfig vhf "1200 baud 144.99MHz"

81

There are a few more files, and a few more tricks, involved in getting NOS up and
running. This chapter is a catch-all that will help you add the finishing touches to your
NOS installation.

Storing Name/Address Matches in DOMAIN.TXT

Back in Chapter 3 we talked about the way the Domain Name Service matches machine-
friendly IP addresses with human-friendly hostnames. You’ll want to configure DNS
on your system to provide that mapping. How you handle this will depend on whether
your local network includes a system that acts as a domain name server.7-1 If you’re that
lucky, you only need to create a minimal local domain file (called DOMAIN.TXT) in
the NOS root directory to contain a couple of special addresses. If you don’t have a
local domain name server (DNS), you’ll want to have a more detailed DOMAIN.TXT
that includes the hostnames of all the systems with which you communicate

Remember, DNS is a convenience: if you don’t have an entry for a host in the file (or
the name server doesn’t know about it), you can still talk to that host; you’ll just need to
use the IP address instead of the hostname in NOS commands.

Chapter

7
Installing NOS: The Rest of the Story

Part 2: Installing and Configuring NOS

7-1 Any NOS system can be a DNS server, but there should be local coordination to make sure there's a single
source of authoritative information on the network.

82 Chapter 7

PART 2 – Installing and Configuring NOS

However, for NOS to work properly, it needs to have at least two entries in its local
DOMAIN.TXT file. One is for the “loopback address” – the internal address every
TCP/IP system uses to talk to itself, which is always 127.0.0.1. The other maps your
own hostname to your IP address. If those aren’t present, strange things may happen;
in particular, smtp won’t work properly and incoming mail may be lost in never-never
land.

If you’re using DNS, NOS will automatically save the hostname/address matches it
gets from the nameserver in DOMAIN.TXT, so you’ll find that file growing by itself.

Although the DOMAIN.TXT file created by NOS may look cryptic, the basic format is
quite simple. For each IP address/hostname mapping, you need a line that includes
the IP address, the keywords “IN” and “A”, and the fully qualified hostname, including
trailing period. An entry might look like this:

127.0.0.1 IN A localhost

44.71.36.17 IN A n8ur.ampr.org.

If you have included the command domain suffix ampr.org. in AUTOEXEC.NOS
(and you should), you could simply use “n8ur” instead of “n8ur.ampr.org.” in the last
field. You’ll avoid possible problems and confusion, though, by using only FQDNs in
DOMAIN.TXT entries. And note that the trailing dot is critical if you use the FQDN —
without it, NOS will add the domain suffix (if set), resulting in “n8ur.ampr.org.ampr.org.”,
which doesn’t work too well!

If you are operating in a network with a nameserver, the updates that NOS
automatically makes to your DOMAIN.TXT file will have an additional field that defines
how long in seconds the entry should be treated as valid, but you don’t need to include
that field in hand-made entries. Appendix F shows a simple DOMAIN.TXT file.

83

Installing NOS / Part 3 – The Rest of the Story

 Security, Permissions, and FTPUSERS

When you run the severs in NOS, you are letting other users into your system. NOS
provides a mechanism to control who can do what with your machine. It’s based on the
FTPUSERS7-2 file. The idea is that each user on your system can be assigned a login
password, the top-level directory they can access on your disk drive, and a permission
mask that defines just what commands they can perform.

FTPUSERS started out as a simple file that defined who could upload and download
files via ftp (hence its name). As NOS added capabilities, and particularly as BBS and
gateway funtionality grew, the number of possible permission settings has become huge.
Appendix G shows a sample FTPUSERS file, and lists the premissions that can be enabled
or disabled for users in JNOS and TNOS.

Each user defined in FTPUSERS gets a single permission “mask” that’s created by
adding together the decimal value of all the permissions you want to grant. For example,
to give a user access to read, write, and create files in the ftp server, you’d add the
values for each permission (1 for read, 2 for write, and 4 for create) to come up with a
permission mask of 7. To add the ability to delete files (dangerous!) you’d add 8 more
and the mask would be 15. To add additional permissions, just keep adding values.
Since the individual values are all powers of 2 (each one is twice as large as the last), the
numbers get big pretty quickly!

The entries in FTPUSERS are in this format:
<username> <password> <directory> <permissions>

n8ur zimbot /pub 7

Generally, you’ll want your FTPUSERS file to include an entry for you—with a
password! — that gives broad permissions, so that you can manage the system. You
may have a few trusted users who will also have passwords and perhaps less broad

7-2 In TNOS 2.30 and later, the file is called SECURITY.

84 Chapter 7

PART 2 – Installing and Configuring NOS

permissions. You will want an entry for anonymous ftp users (discussed below in
Chapter 10) and, if you’re running NOS as a PBBS, an entry establishing permissions
for mailbox users and PBBS forwarding partners (that’s discussed in more detail in
Chapter 13). Finally, if you're running an Internet gateway, there are a whole additional
set of permissions you may want to establish.

TNOS also adds several new security functions that operate in conjunction with the
FTPUSERS file. They are especially useful in securing systems that serve as Internet
gateways because they allow different permissions for users who access the system via
the Internet than for those who come in over the radio ports. If you need these features,
check the TNOS documentation and release notes for more details.

For added security, TNOS also encrypts the passwords in FTPUSERS each time the
program starts. To set or change a password, edit it into the file in plain text. The next
time you start TNOS, it will automatically encrypt the password. You can also force
encryption while TNOS is running by entering the command encrypt.

Finger — an Information Server

finger is a tool that allows users at other hosts to obtain information about your system
and your users. The first way to use the finger command is finger @<hostname>,
which returns information about that host. Additionally, you may be able to get
information about a single user by using it this way: finger <user>@<hostname>.
Finally, the JNOS and TNOS versions each provide system information by substituting
a command name for the “user” part of the command. For example, the command
finger users@<hostname> will return a list of the users currently logged into the
mailbox.

85

Installing NOS / Part 3 – The Rest of the Story

The information returned from a NOS system in response to a finger command(other
than fingering system information) is read from files in the finger\ directory. Each
user who wants to provide information in response to a finger request should have a
file with a name that matches their login name in that directory. The data returned by
the finger @<hostname> version of the command is the list of files contained in the
finger directory; in TNOS and JNOS, the output also includes the built-in commands
that may be fingered.

Fingering a single user – finger fred@n8ur.ampr.org – displays the contents of
that user’s finger file. You can use any ASCII text editor to create these files. Don’t go
overboard — one screen of text is plenty.

You can also create additional files with information about specific aspects of your
system. For example, you might have a list of the files available for downloading on
your system in a finger file called “filelist.” A remote host who issues the command
finger filelist@<myhost> will get that list.

The AT Command

If you keep your NOS system running all the time, you’ll find the at command a
lifesaver. It’s a timed execution command that allows you to schedule events to occur
at a given time. Using “at” commands in AUTOEXEC.NOS allows you to set up your
system to take care of its own housekeeping. The syntax is simple:

at <time> <command>

The time can be specified in yymmddhhmm, hhmm, or mm form. If you want the
event to occur at a time relative to the time the at command is run, you can specify the
time as “now+hhmm”. Let’s say we want to exit NOS at 10:15 AM, and the time is
currently 10:00 AM. Either at 1015 exit or at now+0015 exit would work.

86 Chapter 7

PART 2 – Installing and Configuring NOS

If the command has any subcommands or options (i.e., it consists of more than one
word), you need to put the entire command string in quotes. For example, use at

now+0015 “attend off” to turn off the attended flag fifteen minutes from now.

You can extend the power of the at command by using it with the source command to
execute a series of commands stored in a separate file, rather than a single command.
For example, the command at 0015 “source cleanup.scr” would execute all the
commands contained in the text file “cleanup.scr”.

The at command is particularly useful if you are running NOS as a PBBS, where there’s
regular maintenance to be done. But it can be handy even when you’re operating an
end-user system. TNOS also provides a more sophisticated timed-execution command
called "cron"; see the TNOS documentation for information on using it.

Memory Matters

I’ve already mentioned (several times!) that NOS stretches the limits of an MS-DOS
computer’s memory. You can see how memory is being used in your system in two
ways. First, there’s a mem stat command that you can issue from the command line to
display memory statistics. Second, if you are using a newer version of NOS and have
enabled the status display with the statline on command, you will see a running
display of the critical memory numbers on the top of your screen.

The display shows a bunch of statistics, but there is one that’s critical, and another
that’s useful. The critical value is the coreleft. This is the amount of unused memory
that’s available for NOS to grab from DOS if it needs to. If this value falls below 16k or
so, your system is likely to become unstable when new sessions are opened or new
users sign on.

The useful value is heap avail. It tells you how much memory NOS has grabbed from
DOS, but isn’t using at the moment. Adding the values of coreleft and heap avail together
yields the total amount of unused memory NOS has to work with.

87

Installing NOS / Part 3 – The Rest of the Story

You may have memory problems even though these values show a reasonable amount
of free memory. Because of the way the DOS memory management system works,
available memory can be fragmented into chunks that are too small to meet a request
from NOS, and for various reasons small pieces of memory can’t be put together to
create larger ones. There’s good news, however—recent versions of JNOS and TNOS
have added memory management routines that “reclaim” core memory, and this greatly
improves NOS stability, though memory remains the biggest challenge to running a
DOS-based NOS system.

NOS typically starts with a relatively high coreleft value, which rapidly reduces and
in theory should become fairly stable after the system has been running for a while.
Rapid decreases in coreleft after the initial reduction at startup are signs that something
is sucking up memory. Lots of unclosed sessions can cause this problem, as can a dead
TNC with lots of data queued up for transmission. If you’re using a PI card driver, or a
packet driver, the setting of the nibufs and ibufsize commands have an impact on
memory usage.

NOS is a good reason to have a memory manager like EMM386 (included with recent
versions of MS-DOS) or QEMM running on your system if you have a 386 or higher
processor. NOS can make good use of the extra memory made available by tricks such
as loading DOS in the high memory area, and loading TSRs (like packet drivers) in high
memory. In addition, JNOS and TNOS have command line switches that can be used to
load some of the NOS data structures into high memory. That won’t buy you much, but
every little bit helps.

If you have a monochrome video card, or a VGA card running with a monochrome
display, you can steal an extra 64k for your DOS window by telling the memory manager
to include in low memory the addresses from A000 through AFFF that are normally
reserved for color displays.

88 Chapter 7

PART 2 – Installing and Configuring NOS

Despite all these tricks, the bottom line still is that you should use a version of NOS
compiled with only the feature set you really need. If you don’t need NET/ROM support,
but have it compiled into your program anyway, you’ve just burned up at least 40k of
memory. Building the convers server into your system will cost 50k. The most stable
NOS is the one that includes only the features you need.

Recent versions of KA9Q NOS and TNOS have completely shattered the DOS memory
limitation. A freeware 32-bit C complier called "DJGPP" can build DOS executables that
are capable of using all the memory an 80386 or better computer contains. Phil Karn
rewrote NOS to work with that complier, and TNOS/DOS migrated to it as of verstion
2.20. As a result, a single executable TNOS/DOS program can include just about every
feature imaginable, and still run reliably on a 386 machine with at least 4MB of RAM.
There is one downside – the DJGPP version of TNOS doesn't seem to work with Crynwyr
packet driver described in Chapter 6. That problem will hopefully be solved before too
long.

NOS Versions: Build or Buy?

One of the great things about NOS is that all the popular versions are available in
source code form, as well as in pre-compiled executable files. This makes it easy for
people to mess around with the program to create their own vision of what NOS should
be. Of course, this has the potential for disaster, but we’ve been lucky—NOS has grown
and prospered as a result of having lots of folks working on the code.

Consider the pedigree of TNOS. KA9Q wrote the original program, and his versions
remain the baseline (Phil is still generating a new release of his code once a year or so).
In 1991, PA0GRI added his own work to create the GRI versions, to which N1BEE later
contributed. Then, WG7J used the GRI code as the basis for JNOS, which was the starting
point for KO4KS’ DOS version of TNOS. Meanwhile, KF8NH was working on a Linux
port of JNOS (which itself was based on other folk’s earlier work on UNIX versions),
and much of that code went into TNOS/Linux. Starting from this base, Brian added a
tremendous amount of new work to create TNOS as it exists today.

89

Installing NOS / Part 3 – The Rest of the Story

Along the way, WG7J moved on to other things, so N5KNX took over development of
JNOS and has sheparded that version of the program through several updates. KO4KS
and N5KNX keep in touch with each other, so many of the improvements (and especially
the bug fixes) added to one program find their way into the other.

We also need to note that lots of important code came from yet other folks. SM0RGV
wrote code for the mailbox (BBS) subsystem, W9NK developed Net/ROM support,
and additional features, design ideas, and bug fixes came from dozens of others. The
full list of contributors to the various versions of NOS numbers several dozen; it’s truly
been a group project.

You can see that the versions of NOS that we’re using today are built on the work of
lots of people. You can probably guess that “lots of people” equals lots of different
features and options, and you’re right. People have added everything but the kitchen
sink (and there are rumors about that) to the code base. NOS is configurable… extremely
configurable.

The options in NOS affect both the software features and the hardware support in the
program. Although it would be nice to just turn everything on and go to town, under
the DOS memory limits there’s simply no way that you can run, or even compile, a
version of NOS that has all forty or fifty options built in. Even if memory isn't a problem,
added features tend to reduce stability, so it's wise to only compile in the features you
need. NOS uses a configuration file in the source code directory to define what features
are included in the compiled program. You need to select a set of options that both
meets your needs and fits in the available memory, and you may need to adjust your
expectations and reduce the option list until you end up with a program that will run.

What is the impact of including lots of features in your custom configuration? Mike
Murphree, N4CNW, has done some experiments with TNOS to see how much the various
options add to NOS’ memory requirements. Including NET/ROM support adds over
40k of code. The convers server adds another 50k. The POP3 client and server together
add 15k. TIPMAIL and XMODEM support add 9.6k. It’s easy to see how these bits of
memory add up to create a monster.

90 Chapter 7

PART 2 – Installing and Configuring NOS

You can compile your own version of NOS to get the features you need. You don’t
need to be an expert in the C language to do it. Editing the CONFIG.H configuration
file is pretty straightforward, and all you need is a text editor7-3. Just remember that the
more stuff you include in the executable program, the more difficult it will be to run in
a stable way.

Compiling NOS under DOS

If you want to compile your own version, you’ll need a compiler program for the C
language. Borland C++ version 3.1 is currently the standard compiler for most DOS
versions of NOS, though early TNOS versions were based on Borland version 3.0 and
current versions of TNOS and KA9Q NOS use the freeware DJGPP complier. You want
to get “Borland C”, not “Turbo C”. It may be possible to build NOS with other compiler
brands and versions, but there’s no guarantee that things will go smoothly, or that the
resulting executable program will work. The steps to compile the program are pretty
simple (though there may be additional steps required for some versions or some
hardware environments; always check the “readme” and documentation files for the
NOS version you’re using to make sure you are doing all the right things):

• Install the compiler software, and then install the NOS source code files in their
own directory.

• Make sure you have the directory where the compiler program lives (usually a
“bin” directory under the main compiler directory) included in your PATH
statement.

• Change to the NOS source code directory.

• For TNOS, run the "pre make" program included with the source code.

7-3 Current versions of TNOS include a program called “MKCONFIG.TCL” that builds CONFIG.H for you based
on your response to a series of questions. That simplifies things, and helps ensure that incompatible options don’t
fight with each other.

91

Installing NOS / Part 3 – The Rest of the Story

• Edit the file MAKEFILE to reflect your computer’s environment (the comments
will tell you what to do).

• Make a backup copy of the CONFIG.H and then use a text editor to edit it (if
you’re building TNOS, run the program MKCONFIG.TCL which will do all the
work for you). All you’ll be doing to CONFIG.H is defining or undefining options
to turn them on or off. Each option is identified by a name, and is controlled by
a line containing a definition keyword followed by the option name. For example,
to include the BBS server, you would have a line that reads “#define BBS”
(including the pound sign, but without the quotes). To leave the BBS out, use
“#undefine BBS”. All you should do is change existing lines in CONFIG.H
from “#undefine” to “#define” or vice versa. The abbr eviations “#def” and
“#undef” will also work. You shouldn’t add or delete lines. The comments in
CONFIG.H will tell you what does what, and will also show you what not to
change. Save the edited file.

• Type “make” from the DOS prompt. The compile could take an hour or more
(depending on the speed of your computer), so be patient. You’ll see lots of
messages whizzing across the screen, and you may see “warnings.” It’s safe to
ignore these. If you see “error” messages, you probably have a problem. If you
get errors at the very beginning of the process that complain about not being
able to find files, the chances are that MAKEFILE doesn’t have the proper
directory information, or you don’t have your path set to include the compiler
programs.

• If all goes well, the DOS prompt will eventually return without an error message,
and you will have a NOS.EXE or TNOS.EXE executable sitting in the source
code directory. Copy it over to your NOS working directory, run it, and see
what happens!

92 Chapter 7

PART 2 – Installing and Configuring NOS

When you run your customized version of NOS, check the memory usage. In particular,
take a look at the coreleft and mem avail values that are discussed earlier in this chapter.
immediately upon startup, and after the system has been running for a while, to see
how much working memory you have. If it’s low, or if NOS won’t even start without a
memory error message, you’ll need to undefine some features and try again. Remember:
build the minimum set of features to do the job you need, and you’ll have a much easier
time getting – and keeping – things running.

NOS under Linux

To get around the DOS “RAM cram,” and gain other advantages, more and more
hams are running KO4KS’ TNOS under the Linux operating system. Linux doesn’t
have the MS-DOS memory constraints, and a TNOS version with all the features
compiled in will run quite reliably. This means that you don’t need to compile TNOS/
Linux yourself (although you can if you want – full source code is available). The
executable file that you download has everything included, and even with all that code
is stable.

The TNOS/Linux combination requires a 386 or better processor, and at least 4MB of
RAM (although 8MB is a more resonable memory size); the hardware demands are
greater than under DOS, but so is the functionality and reliability. The other tradeoff is
that Linux, an offshoot of the UNIX operating system, has a learning curve of its own.
There are lots of good books on Linux basics available, though, and it never hurts to
add another operating system to your resume!

Linux itself is freeware, and is available on the Internet, though the most practical
way to get a Linux system running is to buy one of the several inexpensive (some as
little as $20) CD-ROM distributions that are available. Appendix A lists some of those
distributions. There's also a Linux version of JNOS 1.11a available if you prefer that
flavor of NOS. Like TNOS/UNIX, it requires a 386 or better processor and at least 4MB
of memory. We'll talk more about using Linux for amateur TCP/IP in Part 4.

93

Before we move on to the good stuff about how to make NOS do magic, we need to
talk about some of the low-level parameters that, you may need to tweak depending on
local custom and the quality of the RF paths you are using. These parameters define
how NOS ships data out over the air, and they are similar to some of the TNC commands
you may be familiar with.

AX.25 uses the paclen command to limit the size of packets, maxframe to set the
maximum number of packets “in flight” at any time, and frack to set the time between
retries. NOS has parameters to set these same values at the AX.25 level. In addition,
parameters at the TCP layer provide additional control over the way data moves between
hosts.

Chapter

8
Some Boring but Necessary

Technical Stuff

Part 2: Installing and Configuring NOS

94 Chapter 8

PART 2 – Installing and Configuring NOS

Packet Sizes and Windows

In theory, the larger the datagram (TCP/IP’s term for a single block of data), the higher
the efficiency, because the header information that is a necessary part of each protocol
layer adds a fixed amount of overhead. In larger datagrams the overhead is a smaller
percentage of the total data sent (see figure 8-1).

However, some networks (such as NET/ROM) can’t handle large datagrams in one
piece. More importantly, the larger the datagram, the longer it takes to transmit, and on
a busy or marginal path, the greater the likelihood that something will corrupt it along
the way. It only takes one bad bit to ruin an entire packet, whether the packet contains
one byte of data, or one thousand. Since it takes longer to resend a large packet than a
small one, the cost of retries is greater. These factors mean that a fast network with clear
channels and solid paths can get away with using larger datagrams than a slow, unreliable
one.

NOS provides three parameters that deal with datagram sizes. The most important
one is the MTU (the sixth value in the attach asy command described above). It is
similar to paclen; it sets the size of the largest packet, including any higher layer protocol
headers, that can be sent on an interface. Datagrams larger than the MTU are fragmented

into multiple pieces, which seriously reduces efficiency.

Figure 8-1 - example of overhead in datagrams

Overhead Data Overhead

Overhead Data Overhead

256 Byte Packet which contains approximately 25% overhead

1500 Byte Packet which contains less than 3% overhead

95

Some Boring, but Necessary Technical Stuff

Fragmentation is a Bad Thing for several reasons. First, the high data-to-overhead
ratio of large packets may be lost because the fragment containing the leftover data
may be quite small. For example, Figure 8-2 shows how a packet containing 250 bytes
of data may be fragmented when it passes through an interface that supports a smaller
MTU.

The second fragment contains only 44 bytes of data; there are more bytes of overhead
in the AX.25, IP, and TCP layers than there is data! The fragments aren’t reassembled
until they reach their final destination, so even though subsequent links could handle
the unfragmented datagram, they will instead will have to transmit the smaller, less
efficient fragments.

One common cause of fragmentation in amateur networks is a route that travels over
a NetROM circuit. NetROM has a maximum packet length of 256 bytes, so any larger
IP frames that pass over it will be fragmented. Since NetROM adds protocol overhead
of its own, fragmentation over NetROM circuits is especially painful.

The second problem is that if any fragments are lost in transit, the whole process will
have to repeat – there’s no way to request retransmission of only one fragment. The
receiving host starts a reassembly timer when it receives an initial fragment, and if that
timer expires before all the fragments have arrived, all the data will have to be resent
and refragmented.

Figure 8-2 - Example of packet fragmentation

Overhead Data Overhead

A 256 Byte Packet becomes two smaller packets
if passed through a device with an MTU of 216

Data Data

216 Bytes 44 bytes

96 Chapter 8

PART 2 – Installing and Configuring NOS

Each interface has its own MTU (maximum transmission unit) set as part of its attach
command. For 1200 baud channels that are shared with other packet users, a value of
256 is reasonable; in fact, since that is the largest packet size most non-TCP/IP ham
networks (like digipeaters and NET/ROM) are designed to handle, 256 is the largest
MTU you should specify if any of your packets are going to travel via such networks.

Faster networks that don’t have links using other protocols may take advantage of
higher MTU values. For good-quality channels with fast data rates (9600 baud or above),
it may be reasonable to use an MTU ranging from 512 to 1500 (which matches the
standard value used by Ethernet systems).

The other two parameters that set datagram size are part of the TCP protocol. tcp mss

(maximum segment size) is the largest chunk of data that TCP will send at a time. Because
the TCP and IP headers attached to each datagram total 40 bytes, mss must be 40 bytes
smaller than MTU; 216 is the correct value for an MTU of 256.

The tcp window parameter is like maxframe – it tells NOS how many segments can
be outstanding at once. If the tcp window is set to twice the value of mss, NOS can
receive two segments before sending an acknowledgment. A large window can improve
efficiency because, among other things, multiple acknowledgments can be sent in a
single packet.

Although using a large window has major benefits on full duplex networks, on typical
ham networks the best performance comes from smaller windows that are one to three
times the mss. In fact, Phil Karn has shown that under real-world conditions on our
networks, a window that’s exactly equal to the mss provides the best total throughput.
You may or may not find that to be the case in your neighborhood. You won’t be too far
off if you start with a window equal to twice the value of mss (432 for an mss of 216).
Some experimentation from that point should show what works best in your
environment.

97

Some Boring, but Necessary Technical Stuff

In summary, good starting values are:

 1200 baud 9600 baud or
shared channel higher clear channel

mtu 256 1500

tcp mss 216 1460

tcp window 432 2920

Timers

Another set of parameters that can have a major impact on performance are the settings
of the AX25, NET/ROM (if you’re using that capability in your system), and TCP timers
and retry controls.

By default, NOS uses a retry mechanism that is very polite—it backs off (i.e., increases
the time between retries) geometrically as the number of retries increase, until some
quite-large maximum delay is reached. In other words, if the time until the first retry is
one second; the second retry will occur two seconds later; the third four seconds later;
and the fourth eight seconds later. This is the desired behavior on a network like Ethernet,
where retries are almost always due to collisions between packets. But on ham networks,
where retries might mean that the path is marginal, rather than that the channel is very
busy, these friendly parameters can quickly take retry times toward infinity and
dramatically cut down the amount of data you can move.

98 Chapter 8

PART 2 – Installing and Configuring NOS

The command names and syntax vary between NOS versions, but the first parameters
you might want to tweak are the timertype settings for the AX.25, NET/ROM, and TCP
protocols, which often can be set to:

• The default exponential backoff that increases the delay by a factor of two, then
four, then eight, etc.;

• A linear backoff that doubles, triples, quadruples, etc., the original delay time and
therefore is a bit more aggressive than the default; or

• The same algorithm used in the original TNC code, which doubles the retry delay
after the first retry, and keeps it constant thereafter—this is the most aggressive
timer type.

You’ll have to experiment to decide which timer type for each protocol is most efficient
in your environment. Remember that more aggressive timers make NOS a less friendly
inhabitant of the channel, so make sure your settings don’t make you a bad neighbor!

You may also want to adjust the IRTT (Initial Round Trip Time) values for the AX.25,
NET/ROM, and TCP protocols. IRTT is similar to the FRACK value in a TNC; it’s the
system’s first guess at how long to wait between retries. NOS is much smarter than a
TNC, though, and it will adjust the round trip timer based on the actual time it takes for
a round trip. Setting the IRTT to an appropriate value will ensure that NOS is close to
the mark on the first few retries, will help the system learn the true RTT more quickly,
and will result in an optimized retry strategy.

Some NOS versions have a tcp maxwait command that may be useful. It sets the
longest time (in milliseconds) that the TCP protocol will wait for an acknowledgment
before sending a retry. Used in conjunction with either the exponential or linear
timertypes, this allows you to be a friendly neighbor without your retry times reaching
infinity should the channel temporarily fall apart.

99

Some Boring, but Necessary Technical Stuff

Datagrams vs. Virtual Circuits

There’s one more performance tweak you might try. TCP/IP is designed to be a
datagram-based protocol. That means that it doesn’t establish a link-layer connection
with the other station before sending data – it just shoots datagrams off and expects the
TCP layer to handle acknowledgments and retries.

That’s one of the reasons that AX.25 isn’t an ideal link layer protocol to use under
IP; IP frames are sent as UI (unnumbered information) packets that use only a part of
the AX.25 feature set. In particular, IP doesn’t use AX.25’s mechanisms for sequencing
or retries, but rather relies on the higher-level TCP protocol for that. Additionally,
datagram networks don’t do acknowledgments and retries hop-by-hop, but rather on
an end-to-end basis. That means that the system can’t react immediately to an error,
but has to wait for the round-trip timer to expire before retrying. This can cause
unnecessary delays and reduced throughput on routes that include several hops.

There’s a near-religious war in the networking world between datagram proponents,
and their opposites, the virtual circuit crowd. Networks that use virtual circuits establish
a link-layer connection (as if they had issued an AX.25 "connect" command) between
stations before data transfer begins, and they rely on the link level protocol (in our case,
AX.25) to handle timers, error checking, and retries. Virtual circuit proponents argue
that when links are unreliable, their system provides better throughput than datagram
networks, largely because acknowledgments and retries happen each step along the
way, rather than end-to-end.

Leaving the wars behind, there may be something to be said for virtual circuits in our
world of marginal RF paths. Not to worry; NOS is nothing if not flexible. It provides a
virtual circuit mode that you can specify for each interface by using an appropriate
option with the mode command:

mode <interface> vc|datagram

100 Chapter 8

PART 2 – Installing and Configuring NOS

If you’re trying to make data flow over an unreliable path, experimenting with virtual
circuit mode may be worthwhile (remember that it must be turned on at both ends of
the path).

Before Leaving the Boring Stuff...

Even more than in other parts of this book, this discussion glosses over lots of subtleties.
Much of what I’ve said here is a bit controversial; there are a wide range of views on
how to tune these parameters for best performance. Changing them can drastically
affect throughput for better or worse, and both experimentation and local consensus
are necessary to come up with settings that work well without stomping on other users
of the channel. One user with wrongly set parameters can bring a network to its knees,
so please be considerate and ensure that your system is compatible with your neighbors.

101

We’re finally ready to begin using NOS, instead of just talking about it. This chapter
will help you figure out what to do once you finally see the NOS prompt on your
computer screen.

KISS Mode

Once NOS is installed and your configuration files are set, you need to do one more
thing before you’re ready to start: get your TNC talking to your computer in KISS

mode. Nearly all TNCs support KISS in one way or another.

What is KISS? The acronym stands for the common expression, “Keep it Simple,
Stupid.” In this context, it’s software that “dumbs down” your TNC and lets NOS
manage the AX.25 protocol itself. A TNC operating in KISS mode deals only with the
lowest-level activities of assembling and disassembling packets and managing things
like TX delay; it lets NOS control retry timers, packet lengths, and all the other parameters
that we’ve been talking about.

Chapter

9
Using NOS

Part 3: Using NOS

102 Chapter 9

PART 3 – Using NOS

To put your TNC in KISS mode for the first time, you’ll typically need to use a standard
terminal program to issue commands to the TNC to set the serial line baud rate to the
same speed as you’ve specified in the NOS attach command, to 8 bit data, and to no
parity. Then, issue the KISS command (for a TNC2, "kiss on"; for a Kantronics, TNC,
"interface kiss"), and the TNC’s software restart command. After that, you won’t be
able to talk to your TNC via the terminal program, but NOS will (don’t worry, you can
easily return the TNC to normal mode if you want to). Now, you’re set to run NOS.

One trick that NOS supports is the ability to send commands to the TNC during startup
through entries in AUTOEXEC.NOS. The comm command will send a string of text to
the named interface. For example, to force a Kantronics DataEngine or KAM into KISS
mode, you could issue these commands:

comm vhf “interface kiss”

comm vhf “reset”

For a TNC-2 clone, the commands would be:
comm vhf “kiss on”

comm vhf “restart”

Note that surrounding the text with quote characters will preserve spaces embedded
in the command. Once you know what commands are needed to put your TNC into
KISS mode, you might want to put the appropriate comm statements into your
AUTOEXEC.NOS file (after the attach commands, but before any parameters are set) to
automatically set KISS mode every time you start NOS.

If you use your TNC with programs other than NOS, you’ll want to return it to KISS
mode before running those programs. Issuing a param <interface> 255 0 command
from the NOS prompt will return the TNC to normal command mode (and cause that
interface to stop working in NOS). Some NOS versions have yet another trick available

103

Using NOS

to make your life easier: after you issue the exit command to quit NOS, they will read
the contents of a text file, located in your NOS root directory, called ONEXIT.NOS, and
execute the commands found there before shutting down. Putting the command to
KISS OFF in that file will leave you with one fewer thing to remember.

If you’re stuck and can’t get your TNC out of KISS mode, there’s another trick you can
try: fire up your terminal program, and, while pressing down the shift and the ALT
keys, use the keypad to type a 0, then a 255, then another 0. That should return the TNC
to command mode.

If that doesn’t work, as a last resort you can remove power from the TNC, open it up,
and remove the jumper that connects the memory backup battery. After a few seconds,
the TNC should lose its memory. When you reapply power, you’ll be back in command
mode, but the TNC will have all its parameters set to their factory defaults.

Some TNCs are known to drop out of KISS mode while in operation, which can be
annoying. If you’re using your TNC for nothing but NOS, you may want to replace the
standard firmware with a new EPROM that is strictly for KISS. KISS EPROMs are
available for the TNC-2 as well as several other TNC models.

104 Chapter 9

PART 3 – Using NOS

The NOS Display

With that taken care of, we’re finally ready to get NOS started. From the DOS prompt,
type NOS (or whatever your executable program is named). In a few seconds, you should
see a clear screen, with some startup information at the top and a prompt.9-1 Error
messages that appear first usually indicate a problem with one or more commands in
your AUTOEXEC.NOS file.

Sessions

In NOS-speak, sessions are the various screens that are active in the program. NOS
supports multiple simultaneous sessions, so you can have a lot going on at once. There’s
always a command session that shows you the NOS prompt and allows you to issue
commands to the program. Each outbound connection you initiate, whether via AX.25,
telnet, or ftp, is a session.

If you want to monitor channel activity, you can establish a trace session. When you
issue commands to view a file on your local disk, or list a directory’s contents, those are
also sessions. You can also shell out to a DOS command line; that’s a DOS session.

Whenever you see the NOS prompt, you are in the command session and what you
type is sent to NOS, not to another station. All commands that you enter at the NOS
prompt need to be followed by the return key.

When you’ve initiated a connection to another station, and see data on your screen,
you are in a converse session; what you type is sent to the remote host. That’s an
important concept: all sessions except the command session pass your keyboard input
through to the station or program at the other end of the session. You can’t issue
commands to NOS while you're in a converse session; you need to return to the command
session to do that.

9-1 Recent versions of NOS allow you to modify the prompt similar to the way you can change the DOS prompt.
Old versions used a simple “net>“ prompt.

105

Using NOS

Managing Sessions

You can list the current sessions from the command session by typing session (which
may be abbreviated to sess). To get from command session to another session, you can
either type sess <session number> or press the function key that corresponds to that
session number—the F3 key will take you to session number 3, for example (if you have
turned on tracing, as described below, the trace session is reached by pressing F9). You
can also use the function keys to jump from one session directly to another, bypassing a
stop at the command screen. As a shortcut, pressing the return key by itself from the
command screen will move you to the most recently active session screen. To return to
the command session, press F10.

The preferred way to close a session with a remote host is to use the exit command
provided by the host. In other words, if you’re logged into a remote host’s ftp server,
issue the quit command and let the remote station terminate the session gracefully. If
that’s not possible, you can issue the command close <session number> from the
command session. If there’s only one session open, you can just enter close. The close
command does an orderly disconnection; it won’t work if the other end has stopped
responding. In that case, you can use the reset <session number> command to force a
session to end. However, a forced disconnection can leave things in a disorderly state,
and you should use the reset command only when you have to.

106 Chapter 9

PART 3 – Using NOS

A Graceful Exit

You should never simply exit from the NOS program when you have an open session.
Doing so can cause great unpleasantness at the remote host. Unless you’re in some sort
of software or hardware lockup, or you know that the station on the other end has gone
away, always close sessions and wait for confirmation before exiting the program.

You should also be aware that your system may have started activity in the background,
for example to transfer electronic mail, or someone else may have initiated a connection
with your system. You may not even know these things are happening. Pulling the
plug on them would be very impolite. Before exiting NOS, you should first use the
session command to make sure there are no current sessions running, and then the
socket command to see if there are any background connections established.

socket will show you a list of sockets (which are connections either in use or available
on your system). If you see any entries in the “Remote Socket” column of the display,
that means there’s at least one remote host communicating with you, and you shouldn’t
exit until that socket has been closed. By the way, if a socket appears “stuck” and no
data is flowing, you can try to bring it back to life with the skick command. Issuing
skick <socket number> will force NOS to retransmit the data currently in its queue,
regardless of the current timer state.

If you need to manually kill a socket, you can do so by entering the using the reset
subcommand of the ax25, ip, or tcp commands with the “PCB” entry listed in the socket

display for that socket. For example, an AX.25 connection to KE8TQ might show up in
the socket listing like this:

S# Type PCB Remote Socket Owner

153 AX25 I 08190c00 KE8TQ on uhf 08116a00 connect

107

Using NOS

If you enter ax25 reset 08190c00, that will reset the socket and terminate the connection.
If this socket was associated with a session (i.e., it was a session that you initiated with
a connect, ftp, or telnet command), the session will still be alive, though in “limbo.” To
clear it, go to that session screen with the appropriate function key or the session <session

number> command and hit return. That will close out the session from your end.
Remember, using the reset command doesn’t generate a graceful exit; do this only as a
last resort!

Help

Typing ? in the command session will display a list of commands. Typing a command
name followed by ? will display available subcommands. JNOS and TNOS both offer
more extensive help with – surprise – the help command. Assuming that the help files
are installed in the right place in your NOS directory (if you install the "help.zip" or
similar packages they should be), typing help <command> will display a short
description of that command and its options. You can create your own help files; they
are text files named for the command, and are located in spool/help in JNOS, or etc/

help in current versions of TNOS.

108 Chapter 9

PART 3 – Using NOS

File Commands

You can issue several commands from within NOS to deal with local files and
directories. pwd displays your current working directory, and cd allows you to change
directories. dir displays files in the current directory. mkdir <dirname> creates a new
directory, and rmdir <dirname> removes one. delete <filename> erases a file. more

<filename> will display the contents of a text file using the NOS paging routine to
display one screenful of text at a time. As at the DOS prompt, the "*" and "?" wildcards
can be used in filenames.

You can also “shell out” to the operating system from within NOS by entering either
an exclamation mark (!) or the command shell. To return to NOS, type exit at the OS
prompt. The amount of memory available to run a DOS program from this shell may
be very limited, so don't plan on launching a large program in the shell. Also, depending
on your NOS version and its configuration, shelling out may bring all other NOS activity
to a halt – including sending and receiving packets – so it's not a good idea to do this
when there are active sessions at your system.

You can capture incoming data from the current session to a disk file by using the
record <filename> command, and you can read in a data file from disk to the current
session with the upload <filename> command.

109

Chapter

10
NOS Functions

Part 3: Using NOS

Using NOS for AX.25 Contacts

Although NOS is designed primarily to use the TCP/IP protocols, it also lets you
make standard AX.25 connections to other stations. AX.25 sessions work like other
sessions, and are created with the command:

connect <interface> <callsign> [digi1 digi2 etc.]

from the command session. By the way, the first thing you should do after installing
NOS is try out some AX.25 connections to make sure that your hardware configuration
and basic parameters are working. Knowing that AX.25 is working properly will make
troubleshooting TCP/IP problems much easier.

Establishing an AX.25 connection through NOS is like using the standard TNC
commands, but with a few small differences. First, since NOS can support several
interfaces, each with its own hardware, you need to tell NOS which one to use.

110 Chapter 10

PART 3 – Using NOS

So, to connect to W8APR using the radio on interface “vhf”, enter connect vhf W8APR.
Once you get a “Connected” message, you’ll be able to type to the station at the other
end just as you would with normal packet. If you’re connected to a BBS or other service,
you should exit using the command at the remote end. If that isn’t possible, you can
exit an AX.25 session either by entering close <session number>, or disconnect, from
the command session prompt. Just as with a TNC, these commands can be abbreviated;
just how few of the letters are necessary will depend on each implementation of NOS
and the commands it supports.

The other minor difference between the NOS connect command and a regular TNC is
that the word via is not used when specifying digipeaters, and you can’t use a comma
to separate multiple digis—you use a space instead. To connect to W8APR through
N8KZA on interface ax0, you would enter connect vhf W8APR N8KZA. Check your
reference manual, though: the via keyword and commas in the digi list are likely to be
supported in new versions of JNOS and TNOS.

Recent versions of JNOS and TNOS also offer a way to divide the AX.25 session display
into two windows, one for received data and the other for data you enter. To enable this
feature, use the command split instead of connect to start an AX.25 session: for example,
split uhf ke8tq. This option must be compiled into the NOS executable file to work, so
some precompiled versions may not support it.

Telnet

The telnet command logs you in to a remote TCP/IP host; depending on the capabilities
of that host, you might find yourself chatting directly with the user at the other end,
connecting to the NOS mailbox, which acts very much like a sophisticated personal
PBBS, or getting a UNIX “login:” prompt. To establish a telnet session, enter telnet

<hostname> at the command prompt.

111

NOS Functions

JNOS and TNOS offer a new type of session that improves on telnet for real-time
keyboard-to-keyboard chats. It’s called ttylink, and it works just like telnet except that
it connects you directly to the remote host’s chat mode, and uses a split-screen format
(like the ax25 split command)to make things less confusing as you type to each other.
To start a ttylink session, use the command ttylink <hostname>.

Your ttylink session will result in a message like “Telnet session 1 failed: Reset/Refused
errno 9” if the remote host doesn’t support ttylink. If the operator at the other end isn’t
available to chat, you’ll get a message like “The system is unattended.” You’ll still be
able to type, but there won’t be anyone there to reply. You can set whether or not your
own system will give this message to other stations by setting the attended command
to either on or off. You might want to put this command in your AUTOEXEC.NOS file
to set your default status. You exit from ttylink by issuing the close <session number>

command from the command session prompt.

Using Telnet to Connect to a UNIX Host

When you telnet from one NOS system to another, everything works very much like
a traditional AX.25 connection. The screen display doesn’t use any special formatting
characters; it’s treated as if it were a glass teletype without any way to move the cursor
other than down or to the right. Data is sent line-by-line when you press the carriage
return, and the echo of what you types is locally generated.

When you telnet to a UNIX host, things are different. Most UNIX systems think that
they’re talking to some sort of terminal (often a VT-100) that knows how to clear the
screen and do cursor addressing. And, in UNIX telnet sessions data is sent character by
character and is echoed from the other end. If you stop to think about it, that’s really
the only way you can use a program like a text editor over the network—the remote
system has to have control what appears on your screen, and echoing each character
allow use of cursor control keys, backspacing, underlining, and other features.

112 Chapter 10

PART 3 – Using NOS

These two factors cause a lot of trouble for NOS users who telnet to a Linux or other
UNIX system. The first problem is pretty easy to deal with. Assuming you’re running
under MS-DOS, just make sure that ANSI.SYS or one of its replacements is loaded as
part of your CONFIG.SYS file. That will allow your system to respond properly to the
VT-100 control codes (which are very similar to the codes supported by ANSI.SYS), and
make most UNIX telnet sessions work properly, though you may need to play with
terminal definitions at the UNIX end to get everything working just right.

The second problem—character-by-character echo—is a little bit tougher. When you
telnet to another host, the telnet protocol exchanges information about the capabilities
of the system at each end. The UNIX end will want to take over control of character
echo, and will try to put NOS into character mode. That means that every character
you type on the keyboard will get wrapped up in its own special TCP frame, complete
with 60-something bytes of overhead. As you might have figured out, this doesn’t
work too well over a 1200 baud radio channel. Heck, it doesn’t work too well over a
19.2kB radio channel (though at that speed it is usable). The same problem occurs in the
other direction when a UNIX host telnets to a NOS system.

There is a way to at least partially solve this problem. By entering the command echo

refuse prior to opening a telnet session (or as part of AUTOEXEC.NOS) you can tell
NOS to refuse the remote echo, character-by-character option. That will make the remote
host work the same way as a NOS system does. In this mode, you will be able to do
command-line based things on the remote host, but trying to run programs that take
over the screen (like most text editors and many mail programs) will result in disaster.

113

NOS Functions

Telnet sessions initiated by a UNIX system to a NOS system are another matter. Getting
the Unix telnet command to work in line-by-line, local echo, mode requires commands
at the UNIX end that may be difficult or just plain unavailable. With many versions of
the UNIX telnet program it’s either difficult or impossible to come up with a configuration
that makes the keyboard work right. At the moment, all we can say is that NOS running
over a slow radio link does not make a very good remote terminal for a UNIX system,
and it’s a problem that can’t be solved from the NOS end alone—we need a tweaked
UNIX telnet program to deal with this.

Telnet is a very versatile tool. In Chapter 2, I mentioned that each TCP service (like
telnet, ftp, and smtp) listens for connections on a specified IP port. For example, the
telnet server listens on port 23, and smtp listens for connections on port 25. Most telnet
clients can establish a session using any port number, not just 23 – that's just the default
port that's used when one isn't specified. But if you'd like to chat with an smtp server,
all you need to do is add the port number after the hostname in the telnet command:

telnet n8ur.ampr.org 25

and you will find yourself chatting with smtp. This is useful for debugging problems,
and also allows the telnet client to be used for unplanned protocols like the convers

conference bridge server (more about that in Chapter 19).

114 Chapter 10

PART 3 – Using NOS

File Transfers with FTP

One of the most common uses of TCP/IP is file transfer. The file transfer protocol, ftp,
is widely available and many ham hosts maintain directories of files that are available
for download.

You initiate an ftp session by entering ftp <hostname> at the command prompt. An
ftp session is a bit of a mixed bag. Although it looks like a standard converse session,
some ftp session commands act locally while others act at the remote system.10-1 For
example, some commands rename or delete local files, or change the local directory.
Others allow you to do the same thing on the remote system (if you have permission, of
course).

Once the session is established, the ftp session will prompt you for a user name and a
password. If your hostname and password have been added to the remote host’s
FTPUSERS file, you’ll have the ability to download and perhaps upload files in the
directories permitted you. If you haven’t arranged with the remote host for your own
account, you can try to login as anonymous or guest; many systems support these user
names and grant limited (usually download-only) privileges to them. If you login under
one of these accounts, you should enter your email address as the password to let the
remote host to keep track of who’s been using their system.

Once you’ve logged in, you’ll see a new prompt: ftp>. This will remind you that
you’re actually issuing commands to the ftp session. From the ftp> prompt, you can list
the files in a directory on the remote system, change directories, upload files, or download
files.

To list files, enter dir or ls at the ftp> prompt. You will get a listing that shows
subdirectories (if any) and files together with their dates and sizes. To show the current
directory name, type pwd. To change directories, issue the cd <directory> command.

10-1 ftp sessions actually use two separate data streams. One carries commands between the ftp client and the
remote ftp server, while each time a file transfer begins a separate stream is started to move the file data.

115

NOS Functions

Note that directories are displayed with a forward slash (/) instead of the usual
MS-DOS backslash (\). That’s because the UNIX operating system, which is TCP/IP’s
natural home, uses forward slashes. If the remote host is running NOS, you can use
either character, but most other systems will recognize only the forward slash.

You can change the local directory where retrieved files will be put (and where files to
be sent will be found) with the lcd command. lmkdir will make a local directory, and
lrmdir will remove one. Local files may be listed with the ldir command. lrename will
rename a local file. To monitor the progress of a file transfer, issue the command hash

on before the transfer begins. Then, a “#” symbol will appear for every kilobyte of data
transferred.

Once you’ve found a file you want to upload or download, you need to make a decision.
ftp can transfer the file either as an image (or binary) file, byte for byte, or as an ASCII
file, converting the line-end character as necessary to compensate for different operating
systems (UNIX uses only a linefeed character at the end of lines; MS-DOS uses carriage
return/linefeed). Before beginning a file transfer, enter type i for an image file, or type

a for an ASCII file, at the ftp> prompt.

What are the consequences choosing the wrong transfer type? Transferring a binary
file as type a will almost certainly fail. Transferring an ASCII file as type i will work, but
you may find that the line-ends are screwed up. ASCII transfers are also quite a bit
slower than image, because each line needs to be processed separately.

To start a file transfer, use the command put <filename> to send a file, or get

<filename> to receive one. In both cases, the newly created file will have the same
name as the original file. This can cause a problem if you’re transferring from a system
that supports long filenames (like UNIX) to one that doesn’t (like DOS). If you need to
change filenames, you can add a second filename to the command (such as put

<localfile> <remotefile>), and the transferred file will be named <remotefile>.

116 Chapter 10

PART 3 – Using NOS

ftp takes things quite literally and one source of frustration is the way it tries to force
remote filenames into the local filesystem. In addition to the long filename problem,
specifying a directory as part of the remote filename given to an ftp server can cause
unexpected problems. For example, if your local directory is c:\tmp and you issue the
ftp command get pub/nos/docs/faq.txt, ftp will try to create "faq.txt" not in
c:\tmp, but rather in c:\tmp\pub\nos\docs\, and will complain loudly if that directory
doesn't exist – and it won't even try to create the missing directory.

You can avoid ths problem by specifying a destination name in addition to the source
name. The command get pub/nos/docs/faq.txt faq.txt will have the desired
effect of creating faq.txt in the current local directory. Alternatively, you can change
into the remote directory and then specify only the filename in the get command.

If you want to put or get multiple files that match a wildcard, the commands mput

<filespec> and mget <filespec> will do the trick. mget * will grab all the files in the
remote directory and transfer them to your system. File names in ftp transfers can
include a full path if you desire; remember to use the proper path separator character
for the remote host. By default, mget will ask you before it downloads each file. To
avoid this, you can issue the prompt off command

If something goes wrong during a file transfer, you can terminate it by going to the
command session via F10 and issuing the abort <session number> command, where
“session number” is the ftp session (this will only work if the ftp session is still listening
for your command). To end an ftp session, you can either type quit at the ftp> prompt
(the preferred way), or you can close the session from the net> prompt.

If you want others to be able to access files on your system, you’ll need to set up an
FTPUSERS file in your root directory as described above, establish the file directory
structure (most folks use /pub or /public as the directory to hold publicly accessible
files), and make sure you’ve included the command start ftp in AUTOEXEC.NOS.

117

NOS Functions

A note on channel courtesy: transferring files via ftp is reliable, but can be slooooow,
particularly at 1200 baud. And, downloading a big file can keep the channel busy for a
long time. Before you start downloading a 250 kilobyte file, consider how busy the
channel is, and whether you want to tie things up for (perhaps) several hours by your
download. NOS is polite and won’t hog the channel, but don’t doubt that a large file
transfer will slow things down for everyone else.

PING

The ping command uses ICMP (Internet Control Message Protocol—a special protocol
that IP systems use to manage traffic flow) packets to test a path or to see if a remote
host is on the air. Just enter the command ping <hostname> at the NOS prompt. If the
host is available, you will see a response indicating what the round-trip time was to that
host. The time may be many seconds if you’re going through gateways, so be patient.

You can also tell ping to send off multiple packets by specifying the time between
pings, and the amount of data to include in each packet. The command ping n8ur 128

5000 will send a packet of 128 bytes to host n8ur every 5000 milliseconds
(5 seconds).10-2 In this mode, you can tell ping to send packets as large as the interface’s
MTU, minus 40 bytes of IP and TCP headers. When you start a repetitive ping session,
the results will be displayed in a session screen that shows the cumulative number of
packets sent and received, as well as statistics about the round trip time. If you send
just a one-shot ping, the result will appear in the command session.

Hop

hop is similar to ping, but it shows each system that an ICMP packet goes through to
reach its destination. It’s very useful for determining the route between two stations.
The syntax is hop <remote host>. The command hop maxttl <hops> specifies how
many hops to count before giving up; setting this to a reasonable value keeps the hop
command from going in circles if it encounters a routing loop.

10-2 Be careful with repetitive pings. It’s easy to flood a channel if you make the packet size too large or the
repetition rate too fast.

118 Chapter 10

PART 3 – Using NOS

Finger

The finger protocol lets you see information about a remote host’s users and services.
Entering finger @<hostname> (note the slightly different syntax—the @ symbol must
immediately precede the remote hostname) will display a list of the finger files (described
earlier) at that host. Entering finger <user@hostname> will display the text file for that
user. Recent versions of NOS also allow you to obtain system statistics via finger. The
finger @<hostname> command should show you the commands that you can finger.

Monitoring The Channel

NOS provides a trace session that allows you to watch traffic flowing on any interface.
The syntax is trace <interface> <options>, where the option setting is a three digit
number. The first digit indicates the trace mode; the second and third indicate whether
to monitor incoming and outgoing packets, respectively (1 means monitor, 0 means
don’t monitor). The display formats are: for a first digit value of 0, decode headers but
don’t display data; for a value of 1, fully decode the whole packet in hex and ASCII; for
2, fully decode the headers but display text in ASCII only; for 3, display in a format
similar to the monitor mode of a TNC.

I’ve found display format 3 to be the most useful for general monitoring, so to trace
my UHF interface for packets sent by other stations, and packets I send, I issue the
command trace uhf 311. The output of the trace command goes to a separate session
screen; press F9 to switch to that session, and F10 to return to the command session.
You can also send the output of the trace session to a file by adding a filename at the end
of the command:

trace uhf 311 trace.txt

To stop tracing, issue the command:
trace <iface> 0000

119

We’ve saved NOS’ electronic mail capabilities until now because they are a bit more
involved than some other parts of the program. NOS acts as a mail transfer agent

(“MTA”), a tool that handles the delivery and receipt of messages, but it doesn’t actually
have the means to enter or read messages—there’s no “mail” session. To do that you
need a mail user agent (“MUA”), and you have a couple of choices. You can use an
external mail program like BM or PC-ELM to handle mail, or you can use the NOS
mailbox system as a crude MUA.

If you use the NOS mailbox, the tools you use for entering and reading messages will
be essentially the same as on any PBBS system; there’s not much more to say about it
here. As an example of an external MUA, I’ll talk about BM, which Bdale Garbee, N3EUA
wrote for use with NOS. It’s simple but it does the job, and it has the advantage of
being small enough that you can usually use it from a DOS shell within NOS. It’s also
quite similar to the UNIX “mailx” command, so this is another place where learning
NOS will help you learn UNIX. A discussion of BM demonstrates several important
concepts that all MUAs have in common. Even if you don’t use BM, the information in this

section is important if you’re planning to use the email capabilities of NOS.

Chapter

11
Electronic Mail

Part 3: Using NOS

120 Chapter 11

PART 3 – Using NOS

BM Basics

BM.EXE is a program that reads and writes mail message in the format TCP/IP systems
recognize. Contrary to popular belief, “BM” stands for “Bdale’s Mailer” in honor of its
creator. You can run BM from the DOS prompt just like any other program, or from
within NOS by shelling to DOS with the ! or shell commands; some versions also support
a mail command that is the equivalent of shelling to DOS and running BM. Remember
that when you shell out, NOS is usually in suspension and is not responding to packets.
Staying in this mode too long can result in NOS crashing when it runs out of room to
buffer unprocessed packets.

Before using BM, you need to create its configuration file, BM.RC, which must live in
the root directory of your disk (note: changing your NOS root directory doesn’t affect
where BM looks for BM.RC — you’ll need to make sure that file is always in your disk
drive’s root directory). Here’s the layout of BM.RC.

First, you should set your hostname, which should match the hostname assigned to
your NOS system:

host n8ur.ampr.org

You also need to set your user name, which may be a bit touchier. Some folks
recommend using either your first name, or your initials (for example, my address would
be “jra@n8ur.ampr.org”) while others suggest using your callsign instead
(“n8ur@n8ur.ampr.org”). I prefer using a callsign for the mail name because doing so
has major advantages if you want to interface with the PBBS mail system. You can also
set up an alias (described later), which will allow mail sent to any of a number of
addresses to end up in your mailbox.

121

Electronic Mail

Whichever method you choose, it’s important to be consistent within the local area, so
that everyone knows how to address mail to everyone else. Even if there’s local
agreement, it’s a good idea to use aliases so that mail addressed to your name, your call,
“postmaster”, “sysop”, etc., are sent to the mailbox where you actually read your mail.

Set the user name with this line in BM.RC:

user n8ur

Next, tell BM your full name to use in the “From:” line of your messages:

fullname John Ackermann

If you want to have replies sent to another host because, for example, you are using a
POP server, this line specifies where replies should go:

reply n8ur@w8apr.ampr.org

If you are using a mono video care in your PC, you can tell BM to use direct video
writes for more speed:

screen direct

BM’s built-in editor is pretty rudimentary. You can specify an external editor that BM
should start when you want to compose a message:

edit c:\dos\edit

will establish the DOS edit program as the editor that BM will use.

You can specify folder to store your saved mail; note the forward instead of back
slashes in the file names:

folder c:/folder # directory to hold folders

mbox c:/folder/mbox # saved mail folder

record c:/folder/outmail # sent mail folder

122 Chapter 10

PART 3 – Using NOS

When you start BM, you’ll see a prompt such as n8ur> showing the default mailbox
(based on the user entry in BM.RC). As in NOS, you enter commands at the prompt,
following them with a carriage return. Most BM commands are single letters, optionally
followed by a mail addressee or a message number (or numbers).

To send mail, use the command m <addressee>. The addressee will normally be a
user at a remote host; for example, n8ur might send mail to k8gkh@k8gkh. The most
common mistake people make with BM is forgetting to include the hostname—in other
words, sending mail to <user> rather than <user>@<hostname>. Without the hostname,
BM will think the user is on your local system, and the message will end up being
stored in a mailbox under that user’s name on your own system. That doesn’t work too
well, and BM doesn’t give you any warning that it’s happening.

The Alias File

One way to solve that problem, and do some other interesting things, is to create an
ALIAS file in your root directory (again, note that BM won’t find ALIAS in a \NOS root
directory). When you send or receive a message, NOS will compare the addressee with
the alias file, and if it finds a match will replace the alias with a full address from the file.
An alias can point to a list of addresses, so it’s possible to define an alias that will send
a copy of the message to everyone in your local group. A sample alias file might look
like:

greg k8gkh@k8gkh.ampr.org
bill n8kza@n8kza.ampr.org
club k8gkh@k8gkh.ampr.org n8kza@n8kza.ampr.org

n8acv@n8acv.ampr.org wb8gxb@wb8gxb.ampr.org

john n8ur@n8ur.ampr.org n8ur

The left side of the alias entry must be a local user name; you can’t do this:

n8ur@w8apr.ampr.org n8ur@n8ur.ampr.org

123

NOS Functions

The alias for “club” demonstrates two things: a single alias can expand to several
addresses, and you can continue a long address list on subsequent lines by indenting
them with spaces or a tab character. With these alias entries, mail sent to “greg” will
automatically be expanded to Greg’s full address, and sending a message to “club” will
result in all four users getting a copy. That alias shows that a copy of any message for
"john" will go to my home system, and a copy will also be left in a mailbox called "n8ur"
on this computer. This setup is very useful for NOS systems providing PBBS services –
you can arrange for a copy of each message to be delivered via smtp, as well as stored as
a traditional BBS message.

By the way, you do not use a trailing dot after an FQDN (as discussed earlier) in email
addressing; doing so will screw things up.

Aliases can cause big problems if you create a routing loop. For example, if
n8ur.ampr.org has an entry like

daytcp daytcp@w8apr.ampr.org

n8ur@n8ur.ampr.org

ke8tq@ke8tq.ampr.org

in its ALIAS file, and w8apr.ampr.org has one like
daytcp daytcp@n8ur.ampr.org

in its file, problems are going to happen when a message addressed to “daytcp” is
received at either machine. If a message is sent to “daytcp@n8ur.ampr.org,” n8ur will
follow the instructions in its ALIAS file and send a copy to daytcp@w8apr.ampr.org,
which will follow the instructions in its own ALIAS file and immediately copy the
message back to daytcp@n8ur.ampr.org, and so on until one of the machines crashes.
It’s not a pretty sight.

124 Chapter 11

PART 3 – Using NOS

The simplest way to avoid this problem is to use only one host on your local network
to handle mailing list aliases. The other systems then use their alias files only to handle
local needs. Since only one host is using aliases to send mail to other users, the risk of
creating mail loops goes way down.

Using BM

If you use BM’s built-in editor to compose messages, remember that it doesn’t wrap
lines; you have to hit the carriage return at the end of each line. To stop editing a message,
enter a period by itself at the beginning of a line. You’ll be returned to the BM prompt.
You can read an existing file into the BM editor with the -r <filename> command.

Use the l command to list outbound mail; you can kill an outbound message with the
k <msg#> command, using the message number obtained from the l command.

Several commands are used to deal with incoming mail. h displays the headers
(summary info) about messages in your mailbox. It is the basic command you should
use to check your incoming mail. Each header displayed includes a message number to
use with the other message manipulation commands. Commands given without a
message number act on the current message (the one marked with an “>” in the display
from the h command); if there’s only one message, it is always the current one.

NOS and BM can support multiple users at a single host; a separate mailbox is created
for each user. Unfortunately, NOS has no way of knowing if incoming mail addressed
to <someuser>@<yourhost> is valid, so it will happily accept such mail and create a
new mailbox for <someuser>. You may never know it’s there, unless you use the n

command to display the list of mailboxes. You can also use n to change to a different
mailbox: n <mbox>.

125

Electronic Mail

The commonly used commands (which may be followed by one or more message
numbers if appropriate) are:

msg# message number by itself will display that message and set

it as the current message.

r reply to a message.

d delete a message.

s save a message; if a file name follows the message number(s),

the message(s) will be saved in that file. Otherwise,

they’ll be saved in the default mbox file.

u undelete a message previously marked for deletion.

p print a message on the local printer.

w save a message to a file without including headers.

f forward a message to another recipient.

b bounce a message. Like forward, but keeps the original

sender information intact (i.e., the message will not

appear to have been sent by you).

$ update the mailbox. This deletes messages marked for

deletion and reads in any new mail that may have arrived

since you started BM.

There are two commands that exit from BM: “x” will exit without updating the mailbox.
In other words, the same messages will be there the next time you run the program.
“q” updates the mailbox (like “$”) and then exits.

Mailbox files are stored in spool\mail\ with names in the form <username>.txt.
Outbound mail created by BM is stored in the \spool\mqueue directory, where it waits
patiently until the SMTP server attempts to send it to its destination.11-1 Each outbound
messafe creates two files: one with a .txt extension that contains the message itself, and
another with a .wrk extension that contains delivery information. The filename is based
on the system message number.

11-1 If you’re acting as a POP server, the mail will be stored in the end user’s mailbox, not in the mqueue directory.

126 Chapter 11

PART 3 – Using NOS

Moving Mail With NOS

Now, to the mechanics of getting mail into and out of your system. All mail that you
create is sent to its destination (or at least to the next stop on the way) by the smtp

server in NOS. The smtp timer command tells smtp how often (in seconds) to scan the
spool/mqueue/ directory for outgoing mail. When it finds some, it attempts to open
an smtp session to the remote host in the address and send the mail there. There’s no
default for the smtp timer value, so your AUTOEXEC.NOS file should include something
like smtp timer 600 (which scans for mail every ten minutes). You can manually force
smtp to scan the queue by issuing the smtp kick command from the command session.

If you have a local mail server with connections to the outside world, you can use it to
route mail for hosts that aren’t in your domain file with the smtp gateway <hostid>

command. As mentioned above, it makes sense to appoint one system on your LAN
(preferably one that’s up full time) as the local mail server, which handles mailing lists,
acts as a POP server, and perhaps has an email gateway to the Internet. Without a
gateway, mail bound for hosts which you cannot reach will simply remain queued up
indefinitely; by pointing outbound mail to mail gayeway that operates full time, and
using POP (described on the next page) to receive mail, your mail won't depend on
your machine being up all the time.

127

Electronic Mail

Using POP to Process Mail

Incoming mail arrives at your station when a remote host starts an smtp session with
you. If you don’t keep your station up 24 hours a day, the other host will be trying, and
trying, and trying, to connect with you until you finally show up. This wastes channel
resources, and memory on the remote host. A far better approach is to use POP—the
Post Office Protocol. If your system runs POP, and someone in the area has agreed to be
a POP server, NOS will automatically contact that server when you come on the air; the
server will respond by sending the mail waiting in your mailbox. You can then read it
with BM just as if it had arrived via smtp.

To use POP, the server must establish a username and password for you in its
FTPUSERS file, and needs to have its POP server started. You need to add the appropriate
command to your AUTOEXEC.NOS file:

popmail addserver <server> <timer> <protocol>

<mailbox> <username> <password>

The “server” is the hostname or IP address of the POP server. The “timer” protocol is
how often, in seconds, to poll for mail. If this value is not set, you’ll have to manually
request mail using the “pop kick” command. The “protocol” parameter is either “pop2”
or “pop3” depending on the version of the protocol running on the POP server. POP3
supersedes POP2, and it’s recommended that servers run that version. The “mailbox”
parameter is the name of the local mailbox (the file in spool/mail/) into which mail will
go; “username” is your mailbox name on the POP server; and “password” is your
password on the server.

For mail addressed to you to be sent to the POP server and delivered to you, your
correspondents must address their messages to your user name at the POP server, not

directly to your host.

128 Chapter 11

PART 3 – Using NOS

Remember that smtp or POP sessions may be running in the background without
your knowing about it. Always check for activity with the sockets or tcp status command
before pulling the plug!

Additionally, smtp creates lock files in spool/mqueue when it tries to send outgoing
mail. If NOS is killed before the mail transfer has succeeded, these files (with the
extension “.LCK”) will be left behind and if they are not manually removed, they will
prevent smtp from trying again to send those messages. To prevent this, you should
always issue the command “erase spool/mqueue/*.LCK” before starting NOS. It’s a
good idea to launch NOS using a batch file that removes the locks before executing the
program.

129

Chapter

12
Using NET/ROM

Part 4: The Fancy Stuff

NOS includes support for NET/ROM, probably the most popular packet radio
networking protocol. You can use an existing NET/ROM network to carry TCP/IP
traffic if a native IP network isn’t available, but you don’t need NET/ROM to make
NOS work, and you shouldn’t even configure it unless you need to.

Why not? There are at least four reasons. First, IP is a complete networking protocol
on its own. It doesn’t need something like NET/ROM to route its packets. Second,
running TCP/IP over NET/ROM isn’t very efficient. It adds additional overhead, and
because NET/ROM is limited to packet lengths of less than 256 bytes, you can’t use
larger MTUs to increase throughput. Third, IP routing over NET/ROM isn’t automatic.
You need to manually configure routing commands and other parameters in
AUTOEXEC.NOS for each IP gateway you want to reach via NET/ROM (and the station
at the other end needs to do the same). Finally, NET/ROM networks—especially large
ones—are somewhat fragile, and the willy-nilly addition of new nodes can cause
problems, particularly if they aren’t configured consistently with other nodes on the
network. It’s also worth noting that if you compile your own NOS.EXE and exclude the
NET/ROM code, you can save about 40k of memory overhead.

130 Chapter 12

PART 4 – The Fancy Stuff

When should you use NET/ROM? The classic example is two local IP networks that
can’t reach each other except via an existing NET/ROM backbone. In that case, each IP
network should establish one host to act as a gateway to the NET/ROM network. This
host – and this host only – turns on its NET/ROM server and provides access to the
NET/ROM backbone for all hosts on the local network. Those hosts route their outbound
packets to the gateway as described above. They don’t even need to know that the
gateway is using NET/ROM to route its packets.

Each gateway needs routing statements and manual arp entries for each of the other
gateways on the NET/ROM backbone.

Configuring NET/ROM

NET/ROM runs as a server in NOS. It creates a “virtual interface” that operates on
top of one or more of the physical hardware interfaces. You must configure a callsign
and a NET/ROM alias for the system, as well as specific parameters that control NET/
ROM’s behavior. Finally, for each IP system at the other end of a NET/ROM link
(hopefully, only a single gateway) you must establish a route and add an entry to the
arp table.12-1 Here are commands that might be used in AUTOEXEC.NOS to configure
a TNOS NET/ROM switch (beware, JNOS has some minor differences in syntax):

NET/ROM setup commands

Start the NET/ROM server
start NET/ROM

Attach the pseudo-interface
attach NET/ROM

Set the callsign and alias
NET/ROM mycall W8APR-2
NET/ROM alias #DAYIP

12-1 The manual arp entry is required because arp request messages won’t propagate over a NET/ROM path. NOS
needs to be explicitly told the callsign of the NET/ROM-to-IP gateway at the other end.

131

Using NET/ROM

Enable NET/ROM on the “uhf” physical interface with
a quality of 192. The “n” means that this station
will broadcast only its own node information, and not
the full contents of its routing table. An IP-to-
NET/ROM gateway that doesn’t extend the NET/ROM
network should set the “n” flag to avoid unnecessary
routing broadcasts and possible routing problems.

netrom interface uhf 192 n

Set the minimum quality required to add an entry to
the node table. The value you use will depend on how
many nodes are in the network, and how many of them
are usable.

netrom minqual 140

Set various protocol parameters
netrom timertype linear
netrom acktime 8000
netrom obsotimer 1800
netrom nodetimer 1800
netrom window 3
netrom irtt 3000
netrom ttl 16
netrom tdisc 600
netrom retries 5

Miscellaneous commands
Display only nodes with aliases that <don’t> begin
with “#” in node lists. Nodes named this way are
generally not intended for end-user access.

netrom hidden ON

Configure IP routes. Each route needs a manual
arp entry to map from the IP address of the remote
NET/ROM-to-IP gateway to its callsign.

route add [44.71.36.0]/24 netrom 44.71.36.1
arp add 44.71.36.1 netrom w8cqk-2

Start things off by broadcasting our presence.

netrom bcnodes

132 Chapter 12

PART 4 – The Fancy Stuff

Some NET/ROM Details

There’s a common misconception that NET/ROM routes have to be manually defined
in NOS. That’s not true, though you may want to hard code them into your
AUTOEXEC.NOS file for other reasons (and I’ll describe how to do that in a minute).
NET/ROM is an automatic routing protocol, and NOS takes advantage of that fact. All
you need to do is use the “netrom” keyword in your routing and arp commands, and
NOS will figure out the rest.

However, one minor problem with NET/ROM’s automatic routing is that your station
won’t know what the available routes are until it has received nodes broadcasts that
include the remote gateway’s routing information. JNOS and TNOS automatically
request neighbors to broadcast their routing tables when the NET/ROM interface is
started, but not all varieties of NET/ROM switches will respond to that request, and it
may take a while to receive routing information from one of these uncooperative nodes.
There are two ways around this problem.

First, as I hinted above, you can manually define a NET/ROM route with a command
in AUTOEXEC.NOS like this:
netrom route add #cmhip w8cqk-2 uhf 192 w8rmj-1

This creates a route for the remote node #cmhip 12-2 with callsign w8cqk-2, using a
route quality of 192. The last entry – the “relay” call – is the callsign of the NET/ROM
neighbor who knows how to reach #cmhip; it must be reachable via the specified interface
(here, “uhf”). By the way, a manual NET/ROM route is also useful if you need to reach
your NET/ROM neighbor via a digipeater. You can add the digi’s callsign after that of
the neighbor (of course, the NET/ROM switch at the other end will also have to be
configured to reach you through that digi as well):
netrom route add #cmhip w8cqk-2 uhf 192 w8rmj-1 n8jxa

Here, we’ll use n8jxa as a digipeater to reach w8rmj-1, the relay station.

12-2 Node aliases that begin with a “#” sign are normally hidden from node listings. It’s a good idea to use this
feature to hide nodes, like most NET/ROM-to-IP gateways, that aren’t intended to be connected to by end users.

133

Using NET/ROM

The other way to get routing information more quickly is to save the NET/ROM routing
table each time you exit NOS, and reload it when you restart the system. That’s easy to
do with the netrom save command, which will save the routing table in a file called
spool/netrom.sav. The netrom load command will reload that file and recreate the
routing table as it existed when it was saved. You can insert the netrom save command
in an onexit.nos file (remember, that’s the command file that NOS executes just prior to
shutting down), and you can put the netrom load command in your autoexec.nos file
after you’ve configured the NET/ROM system.

The danger of reloading a saved routing file is that some of the routes may have changed
since the last time the file was saved. Another risk is disabling the save command
without realizing it. This caught us once, when our onexit.nos file mysteriously
disappeared, but the old netrom.sav file was still hanging around. Every time we started
NOS, the old file was reloaded, and was the source of all sorts of obsolete routing
information that caused havoc on the network.

I mentioned above that NET/ROM imposes a limit on the size of TCP/IP frames. The
largest packet a standard NET/ROM system can pass is 256 bytes; anything larger is
fragmented, and the nature of that fragmenting results in great inefficiency for TCP
traffic. Because of the 40 bytes of overhead added by the IP and TCP headers, the
largest TCP segment that can travel over a NET/ROM link is 216 bytes. Current versions
JNOS and TNOS automatically set the MSS for any route that travels via NET/ROM to
this value, so you don’t need to expressly address this limitation in the gateway’s
configuration files.

However, the NET/ROM MSS limitation spreads beyond the gateway system. Any
station that is routing traffic through the gateway should also limit its MSS to 216 to
avoid fragmentation. As a consequence, LANs that rely on NET/ROM for more than
occasional routing should consider standardizing on a 216 byte MSS for all hosts. That
will maximize efficiency for traffic that travels via NET/ROM, at the cost of efficiency
that could be gained on the local network through a larger MSS value. You’ll have to
weigh the tradeoffs to see which is more important in your environment.

134 Chapter 12

PART 4 – The Fancy Stuff

More on Getting Along

As you can see from the example configuration file, NET/ROM provides plenty of
opportunities for parameter tweaking. You can control the frequency of nodelist
broadcasts, how quickly nodes are aged out of the nodelist, and the minimum node
quality the system will accept. You can lock in routes and neighbors, and can adjust the
netrom irtt to adjust retry rates. But don’t go wild playing with the NET/ROM settings.
It’s critical that you coordinate closely with the folks managing the NET/ROM nodes
with which you’ll be connecting, because one improperly configured node can bring a
network to its knees.

Unfortunately, NOS is looked at with suspicion by lots of other packet operators, and
NET/ROM node operators are no exception. If any problem shows up on the network
after a NOS system appears, it’s NOS that will be blamed, rightly or wrongly. So, work
with the local NET/ROM folks to make sure your configuration is consistent with the
way they do things.

TheNET X1 Nodes

Just as a note, there’s a freeware clone of NET/ROM called TheNET which runs in
TNC-2 clones. Recent versions (X1J and higher) support IP routing. If you have these
nodes as part of your local NET/ROM network, you have a head start toward building
an IP network—all you need to do is convince the nodeop to turn on and configure the
IP functionality. With a TheNET node to act as a gateway, local NOS users don’t have to
worry about running NET/ROM at all. There aren’t any X1 nodes in our area, so I can’t
describe how to interface to them, but the reports I’ve received indicate that they work
well as IP routers.

135

Chapter

13
Using NOS as a PBBS

Part 4: The Fancy Stuff

From the beginning, NOS has had a simple mailbox that allowed AX.25 users to connect
to the system and read messages, both private and public. Long ago, SM0GRV upgraded
the mailbox so that an AX.25 user connecting to it sees something very much resembling
a W0RLI-style PBBS, and added rudimentary message forwarding capabilities.

JNOS and, especially, TNOS go further and bring to their versions of NOS all the
functionality of a complete PBBS system. Although NOS was never envisioned as “Yet
Another Packet BBS,” it now has the capacity to be just that. At the extreme, you can
argue that NOS PBBSs perpetuate an inefficient kludge of a messaging system. Moving
a bit closer to the middle of the road, I prefer to think of the NOS PBBS as a link between
the PBBS and TCP/IP worlds, and a gentle path to the greener pastures of a TCP/IP
world. I’ll leave the philosophical arguments to others and just point out that quite a
few full-service PBBSs are running today using these NOS versions.13-1

Configuring and running a NOS PBBS is not a simple undertaking; it’s adding all the
complexity of a sophisticated program to an already complex and sophisticated program!
All I can hope to do here is describe the basics. Please look to the reference manuals and
an Elmer for more details.

13-1 The F6FBB PBBS software has now been ported to Linux, and it provides another way to integrate a BBS with
a TCP/IP system. Configuring FBB is beyond the scope of this book, but we’ll mention it again when we talk
about Linux AX.25 capabilities.

136 Chapter 13

PART 4 – The Fancy Stuff

The NOS mailbox subsystem handles three separate sets of functions, all of which are
highly configurable. First, it establishes the capabilities, such as reading and sending
messages, downloading files, etc., that are made available to users, and it provides
security functions via the FTPUSERS file and security commands to control what users
can and can’t do with the BBS. Second, it manages incoming and outgoing messages.
This includes organizing messages into public and private message areas via the AREAS
and REWRITE files, and expiring old messages using the EXPIRE.DAT file. Finally, it
handles the incoming and outgoing forwarding of messages to other PBBSs through
the FORWARD.BBS file, and preventing the spread of duplicate messages via the
HISTORY file that it maintains.

NOS PBBS Hardware Requirements

Although NOS itself doesn’t require too much hardware horsepower (other than plenty
of DOS RAM), using it as a PBBS requires more resources, and if you’re thinking of
running a NOS PBBS, you should pay some attention to your hardware selection. Though
NOS will run on pretty slow computers, PBBS service puts heavy requirements on the
machine, and particularly on the hard disk system—although in fairness, most other
PBBS programs probably have similar real-world requirements for good performance.
My suggestion, based on lots of experience with JNOS and TNOS, is: invest your money
in a fast hard disk, and if you’re running NOS under DOS, buy a few megabytes of
memory for RAM disk to store temporary files.

The CPU horsepower isn’t much of an issue, and even an ancient 386/40 or 486/20
motherboard will work fine. You don’t need a big hard disk (40MB is more than
adequate), but you should try to find a drive with a fast access time and a fairly speedy
disk controller. You should also use 16550 buffered UARTs on your serial ports to reduce
the interrupt load on the system. As discussed earlier, they are a cheap way to greatly
improve your NOS box’s I/O performance.

137

Using NOS as a PBBS

JNOS creates lots of temporary disk files when users change from one message area to
another, and during forwarding and expiration cycles. Most of the performance problems
come from reading and writing these files. At W8APR, we originally tried a disk cache
of several megabytes, but found that using the memory for a RAM disk provided better
performance. We told JNOS to store its temporary files there (by setting a DOS
environment string of TEMP=D: in autoexec.bat), and that gave much better
performance. Our users’ biggest complaint—the time to change from one message area
to another—disappeared.

The trick is making sure you have a large enough RAM disk to hold all the temporary
files that will ever be needed at any one time. We found that a 3MB RAM disk worked,
but was sometimes dangerously close to full. With the price of memory today, you
should use at least 8MB of RAM (which allows a 7MB RAMDISK) to allow plenty of
room for temporary files; in fact, with memory at less than $1.00/MB, you could probably
run the whole system from 32MB of ramdisk.

Another point to remember in a DOS-based NOS PBBS is that the hard disk may get
very fragmented after the system has been running for a while. It’s well worthwhile to
run a program like the DOS “DEFRAG” utility every now and then to clean up the hard
disk. Since NOS beats on the disk pretty heavily, it’s not a bad idea to check the disk
integrity with something like SCANDISK at the same time.

TNOS for DOS uses a somewhat different process for handling mailbox messages; it
provides better performance but still benefits from a RAM disk and regular hard disk
maintenance. In my opinion, though, the best alternative right now for an NOS-based
PBBS is TNOS or JNOS running under the Linux operating system, as described in the
next chapter. Performance is better, and the biggest problem with any DOS version of
NOS – memory cram – disappears.

138 Chapter 13

PART 4 – The Fancy Stuff

Configuring the BBS

 To work properly as a PBBS, NOS requires you to set several commands and
parameters within AUTOEXEC.NOS, and to create and edit several configuration files.

It’s time for another warning: when you set up your NOS system as part of the PBBS
forwarding network, you are interfacing with other systems using other software. The
forwarding network is a fragile thing, and misconfigured PBBS systems can muck things
up very quickly. Unfortunately, NOS has gotten a bad (and undeserved) rap as a problem
child in the PBBS world, and any time there are problems with duplicate bulletins or
other screwups, any NOS system in the forwarding path is going to be blamed.

It’s important, not only for your reputation but for the reputation of NOS, that your
system be properly configured before you start doing live forwarding. Test with a local
system first, and be aware that compatibility with some other PBBS software may take
configuration tweaking on your part. Take heart, though: properly configured, current
versions of JNOS and TNOS are perfectly capable of being good neighbors to all the
other PBBS programs out there.

That said, let’s move on to the NOS configuration files that you’ll need to build for
PBBS service.

139

Using NOS as a PBBS

AUTOEXEC.NOS

The basic settings that tell the PBBS subsystem who it is, and how it should work, are
contained in AUTOEXEC.NOS. Here’s a sample of the PBBS configuration commands
for TNOS (by the way, this sample is based on the one generated by the mksetup.tcl
program included with TNOS version 2.10):

Start the AX.25 server for incoming connects
start ax25

*** Set the basic PBBS functions ***
This lets people page the operator
pbbs attend on

Prevent people from sending bulletins without
including an “@host” part
pbbs enforce on

The message of the day that all users get.
motd “Welcome to w8amp.ampr.org!”

The message AX.25 users see.
pbbs motd “Welcome to TNOS at w8apr.ampr.org!”

The message telnet users see.
pbbs tmsg “Welcome! Please login with your call sign!
Use any password!”

The jumpstart command tells TNOS to bring up the
pbbs menu immediately upon receiving a connection
to the AX.25 mycall. If this is turned off, the
user will have to hit a carriage return before
getting the menu.
pbbs jumpstart on

Time out users who don’t do anything in 10 minutes.
pbbs tdisc 600

An alias callsign for the BBS.
pbbs alias MVFMA

Password for remote sysop acceptance.
pbbs password averylongpasswordwithmanyletters

Log PBBS activity.
pbbs log on

140 Chapter 13

PART 4 – The Fancy Stuff

Complain if a message is entered without a subject.
pbbs nosubjbell on

Hold all locally generated mail for review.
pbbs holdall on

Hold all locally generated BULLETINS for review.
bulletin hold on

Don’t send messages about permission infringements
and system errors to “sysop” – if left on, this can
generate a lot of messages!
errors off

This is a full-service BBS (not a PMS).
pbbs fullservice on

Allow third-party traffic.
third on

*** Bulletin Handling ***
“On” means date associated with bulletin is date
originated; “off” means it’s the date received.
bulletin date on

Optimize forwarding by scanning the R: lines so we
don’t forward to systems that have already received
the message.
bulletin check on

Bulletin return address is from last R: line.
bulletin return on

*** Mailfor beacon options ***
Calls listed here will be excluded from “mailfor”.
pbbs mailfor exclude w8apr sysop n8ur

Send mailfor beacon every 20 minutes.
pbbs mailfor timer 1200

Display a “new mail” message when stuff arrives for
these areas/users.
pbbs mailfor alert mode on
pbbs mailfor alert mbox N8UR

Tell the TNOS status line to display a “!” to the
left of the date line when mail is in the hold file,
and a “@” when “alert” mail is waiting.
pbbs mailfor hold mode on

141

Using NOS as a PBBS

*** PBBS forwarding parameters ***
Your hierarchical address, minus callsign.
forward haddress #DAY.OH.USA.NOAM

Use bulletin IDs in forwarding.
forward bid on

Use FBB-style forwarding.
forward fbb-style on

Use FBB compressed forwarding.
forward fbb-compression on

Forward mode allows different forwarding strategies
to be set in FORWARD.BBS. If set to “0”, forwarding
will be disabled.
forward mode 1

“On” includes smtp headers in forwarded messages.
forward smtp on

Callsign for outbound forwarding sessions.
forward mycall W8APR-7

Local time is this many hours from UTC (i.e. +1, -4).
forward utc -4

*** White Page commands.***
Enable white pages
wpage client on
wpage server on

Keep WP entries for this many days.
wpage age 75

The last thing to do is start the forwarding
timer and kick off an initial forwarding run.
forward timer 300

forward kick

There are a few dozen other subcommands in the pbbs, bulletin, and forward menu
trees, but their default values are generally acceptable. The commands shown above
are those that are either particularly important, or offer interesting customization
possibilities.

142 Chapter 13

PART 4 – The Fancy Stuff

Managing the Mailbox with the REWRITE and AREAS Files

One of the unique features of NOS as a PBBS is its ability to sort messages into different
areas based on addresses. This means that all messages addressed, for example, to
“TCPIP@USA” can be stored in a single area, and users can see all these messages
grouped together when they view this area. Two files manage this process: REWRITE

defines the rules by which messages are dumped into areas, and the AREAS file defines
the “public” areas that users may access.

Areas

Let’s talk about areas first. An area is a single mail file that contains all the messages
addressed to a single user. NOS puts messages in areas following rules contained in the
REWRITE file. If REWRITE doesn’t have a rule that matches a specific address, NOS
will get confused.

Areas for user messages are private—only the user who matches the area name (or
the sysop) can access them. Private areas aren’t very useful for bulletins and other
messages of general interest, though, so NOS allows for public areas as well. Any user
can read the messages in a public area. You can make an area public by putting its
name, optionally followed by a short description, in the AREAS file. A simple AREAS
file might look like:

help Help messages for this system
tcpip Messages about ham tcp/ip
packet Messages about general packet radio
junk Messages addressed to “ALLUSA”

Non-sysop users have access to their private area, where mail addressed to them is
placed, as well as to all the areas listed in AREAS.13-2 When connecting to the mailbox,
a user starts out in his private area where he can list and read his personal messages.

13-2 There’s another file called AREAS.SYS that controls the areas available to users with sysop privileges. This is
useful because the message expiration process only works on areas that are listed in one of the AREAS files.
AREAS.SYS allows you to create an area, for example, to hold all the “SYSOP@” quasi-bulletins and keep them
private, yet automatically expire them after they age.

143

Using NOS as a PBBS

The “A” command in the mailbox is used to change areas (entering a tcpip at the mailbox
prompt changes the user to the tcpip area). The “AF” command lists all the public areas
and their descriptions.

The Role of the Rewrite File

How do messages get routed into the area files? The REWRITE file handles that process;
it’s the map that tells NOS where to put incoming messages, whether they arrive via
smtp or via the packet BBS network (actually, the NOS smtp system processes all mail,
regardless of where it originates). Though REWRITE can become a long and cryptic
looking file, the basic concept is simple. Each line in REWRITE has at least two parts:

<template> <rewritten address>

Every time a message comes into the system, the NOS smtp process matches its address
against the rules in the rewrite file, starting at the top; when an address matches a
template, NOS replaces (or rewrites) that address with the one on the right side, and
stores it in the area that matches the rewritten address.13-3 For example, if NOS receives
a message addressed to “TCPIP@ALLUSA” and the rewrite file includes only the line:

tcpip@allusa tcpip

NOS will deposit that message in an area named “tcpip” (an area is actually nothing
more than a disk file named after the rewritten address, plus a “.txt” extension). If
there’s an entry for “tcpip” in the AREAS file, that area will be publicly available, and
any user who changes to it will be able to read the message.

13-3 The rewrite process doesn’t physically change the address contained in the message – it only changes the
envelope address, or the address NOS is using when it processes the message. After rewriting, the message
headers remain just the same as they were before.

144 Chapter 13

PART 4 – The Fancy Stuff

The goal of the rewrite process is to ensure that every incoming message address matches a

rule. No message should “fall through” the rewrite file without finding a match, and
every match should result in the message being put in the proper area.13-4

Wildcards, Variables, and Recursion

Three features make REWRITE a powerful tool. First, it supports wildcards (the “*”
character in a template matches a string of zero or more characters), so it can match lots
of different addresses with relatively few rules. For example, consider this rewrite rule:

@allusa junk

This template can be broken into three parts. The first “*” is a wildcard that matches
all the characters in the incoming address up to “@allusa” (from now on, I’ll refer to the
non-wildcard strings in a template as separators). The separator is the second part.
Finally, the second “*” matches any characters to the right of the separator, forming the
third part of the template.

To score a match in REWRITE, the incoming address must match the pattern set by
the template. Any character, or no character at all, will match a wildcard. The separator
must be matched exactly in the incoming address. In the example, “tcpip@allusa.usa”
would match – “tcp” satisfies the first wildcard, and “.usa” matches the second.
“@allusa” matches the separator.

However, “tcpip@allus.usa” would not match, because the separator requires an exact
match on “@allusa”. If you wanted to make both “@allusa” and “@allus” match, just
shorten the template by one character to “*@allus* — now both versions will match the
shortened separator.

13-4 That’s not quite true. The rewrite rules need to deal with internet-style addresses that need to be sent on to
another TCP/IP host via smtp. Those messages go into the smtp spool directory (mqueue) and not into an area.

145

Using NOS as a PBBS

Wildcards by themselves allow flexible matches, but another tool makes the wildcard
concept even more powerful. That tool is variable substitution. When an address
matches a template containing wildcards, the characters matched by each wildcard can
be represented in the rewritten address by variables. The first wildcard string is accessed
with the variable “$1”, the second with $2, and so on up to $9. Here’s an example of
how variable substitution works:

@W8APR $1 r

This rule takes any mail that’s addressed to W8APR and rewrites it to the user name
alone, stripping off the host part. The “$1” represents the string matched by the first
wildcard in the template, and forms the entire rewritten address. If we feed the address
“KE8TQ@W8APR.#DAY.OH.USA.NOAM” through this rule, the $1 variable will contain
the part of the address matched by the first wildcard – “KE8TQ”, and that will be the
rewritten address; the rest of the original address is discarded. The second wildcard is
there to ensure that the rule ignores anything after the “W8APR” hostname – without
it, “KE8TQ@W8APR” would match, but “KE8TQ@W8APR.#DAY.OH.USA.NOAM”
wouldn’t.

By the way, did you notice the “r” hanging out beyond the rewrite address of the rule?
That’s the key to REWRITE’s third tool – recursion. Including an “r” at the end of a rule
tells smtp to start over again at the top of the REWRITE file, using the rewritten address
as its input. That’s very useful if you need to “preprocess” an address.

The example we just worked through is a very important one. You need a rule like
this at the top of your rewrite file to capture addresses that are local to your system (I’m
in a creative mood, so I’ll call this localization.) A localizing rule is necessary to reformat
local addresses into a format that’s valid for an area name. Without it, a message
addressed to “KE8TQ@W8APR.#DAY.OH.USA.NOAM” that doesn’t match any other
rule will be put into an area file called “KE8TQ@W8APR.#DAY.OH.USA.NOAM.TXT”,
which isn’t what anyone (particularly MS-DOS) wants!13-5

13-5 NOS versions that support the NNTP news transfer protocol handle this a bit differently. Instead of a long
filename with lots of “.” characters, they break the name into subdirectories. The example would result in this
file: spool/mail/ke8tq@N8UR/#day/oh/usa/noam.txt. For normal mail, this still isn’t the result you want!

146 Chapter 13

PART 4 – The Fancy Stuff

Designing a REWRITE File

You’ve survived the mind-numbing theory of how the rewrite process works. Now,
how do you use it in practice? I’ve included a complete example of a REWRITE file in
Appendix H; you may be able to use it by changing our local rules to match yours.

Probably the most important idea to keep in mind when designing the REWRITE file
is that the rewrite process is linear, and stops after the first match. This means that the
order of rules is very important. Once an address matches a rule, that’s the end of the
story (unless you’re using a recursive rule). Here’s a gross example:

* junk

@tcpip tcpip

You’re never going to get any messages in the tcpip area, because the first rule catches
everything. This example is very obvious, but the problem can be very subtle as well.
For example:

@allus allusa

tcpip@* tcpip

Here, the first rule will catch messages addressed to “tcpip@allusa” and put them in
the allusa area, instead of the tcpip area that was intended. You can solve this problem
by reversing the order of the rules.

Here’s an order for the REWRITE file that I’ve found works well:
1. A recursive localization rule.

2. Capture internet-style addresses that should be sent on via smtp. If you have any sort of
Internet email connectivity, you’ll probably end up with a rule for each of the top-level
internet domains, and perhaps several of the country domain designators as well.

3. Rules that deal with local names. This produces results similar to the alias file. You
may want to have a rule that puts messages for “sysop” in your personal area. There
are really two kinds of sysop messages: those addressed to “sysop” or sysop@<your
station>, which are probably private messages you should pay attention to, while those

147

Using NOS as a PBBS

to “sysop@<flood designator>” which are really bulletins. You may want to put the
sysop bulletins in a public or semi-public (using the AREAS.SYS file in TNOS) area.

4. Rules for “subject matter” bulletin types such as “arrl”, “amsat”, “packet”, “tcpip”, etc.,
that you want to assign individual areas. You’ll probably want two rules for each of
these areas: one like “*@<area>*” and one in the form “<area>@*” to make sure you
catch the inconsistent address schemes used in the PBBS world.

5. Rules for geographic flood designators like “allusa” and “ww”.

6. Forwarding rules. Depending on your forwarding partners, you may be able to use a
few rules to send all outbound PBBS messages to a single BBS, or you may need a
separate entry for each state, for each continent, and for the local distribution
designators in your own and neighboring states. The area(s) into which you put
messages for forwarding should be private and not included in the AREAS or
AREAS.SYS files. We use the suffix of the forwarding partner’s call as the area name
– for example, messages we forward to WA8ZWJ go into a private area called ZWJ.
That way, Keith can still receive mail (and access his mailbox) as WA8ZWJ@W8APR
if he needs to.

7. Finally, you need a “check” rule that catches anything that’s left for syop review.
Something like:

@ check

will do that. This will put oddball messages into the check area, which the sysop
should check regularly. The contents of this area will give you clues about changes you
may need to make to the rewrite file, or education you may need to provide your users.

Moving Messages with FORWARD.BBS

PBBSs are built around the concept of mail forwarding—they use a protocol to
automatically connect to other PBBSs and forward both private messages and bulletins.
NOS uses the FORWARD.BBS file to define what PBBSs to forward to, how often to do
it, and what messages should be forwarded.

148 Chapter 13

PART 4 – The Fancy Stuff

The structure of FORWARD.BBS is straightforward. It consists of one set of entries for
each PBBS to which the system forwards. The entries specify the callsign of the remote
PBBS, how often to connect (and optionally the hours during which connects are
permitted), any special commands necessary to make the connection, and, finally, a list
of all the message areas that should be forwarded. So, carrying on the example I started
above, the FORWARD.BBS entry at our system for WA8ZWJ might look like this:

forward to WA8ZWJ only between 01 and 07 hours

WA8ZWJ 0107

make the connection with this command

c uhf WA8ZWJ

forward messages in the following areas

tcpip

packet

ohio

zwj

end the wa8zwj forwarding info with a line of dashes

The first line specifies the name of the remote PBBS, and the starting and ending hours
that we will forward to it. The second line specifies the NOS command string that’s
used to actually establish the connection. The next lines, up to the dashes, are the areas
that we will forward to this PBBS. A line containing several dashes indicates the end of
the section for each forwarding partner.

This list includes several public areas, as well as the private "zwj" area described above.
When this system connects to WA8ZWJ, these areas will be scanned and any messages
not yet sent to WA8ZWJ will be forwarded to him. Once messages in a public area have
been forwarded, NOS adds a header line to the message text to show that fact; messages
in private areas like zwj are deleted after forwarding.

149

Using NOS as a PBBS

Recent JNOS and TNOS versions have added a lot of flexibility to FORWARD.BBS. It
can now handle complex connect scripts that might be needed to establish a connection
with a PBBS several network hops away, and you can control reverse forwarding and
polling behavior for each PBBS in the list.

A more complete FORWARD.BBS file, though by no means the most complicated one
possible, is listed in Appendix I.

Cleaning Up With the EXPIRE.DAT File

A busy PBBS may have several thousand active messages in its files. It’s necessary to
clean out the old messages every now and then to keep disk space under control.
EXPIRE.DAT defines the maximum age (in days) that messages will be stored in each
area. There are two ways to expire the messages: There’s an external program called
EXPIRY.EXE that will run outside of JNOS (but not TNOS), and there is an internal
expire function that can be set to fire off at regular intervals. I recommend you use the
internal expire command. Here is a sample AUTOEXEC.NOS section that you could
use to set up internal expiration:

at 0700 “expire 24”

at 0701 “expire now”

at 0800 “oldbid 24 21”

The first two commands set the expire timer to kick every 24 hours and start the first
expire process a minute later. The last command starts the bid expiration process an
hour later, telling it to run every 24 hours, keeping old bids for 21 days. This trims the
HISTORY file by deleting old entries; if you don’t do this it can grow huge. A very large
HISTORY file not only uses disk space but also slows down operation, since NOS must
scan that file for every incoming forwarded message.

At W8APR we once found that hundreds of messages were queuing up in the mqueue
file and never being delivered; the system was bogging down and finally crashing. We
discovered that the expire process had inadvertently been turned off, the HISTORY file

150 Chapter 13

PART 4 – The Fancy Stuff

was many megabytes in size, and the time to process each message was so long that the
smtp process was timing out. Expiring out the old bids reduced the file back to a normal
size, and everything worked fine after that.

Revisiting the FTPUSERS File

I spoke briefly about the FTPUSERS file earlier. Both JNOS and TNOS have greatly
expanded the permissions available to users, and both use a common entry called
univperm to set default permissions for mailbox users. The value of the univperm
entry will vary depending on the configuration of your system; see the sample FTPUSERS
file in Appendix G. To calculate the value for univperm, add up the values of the
permissions you want to give your mailbox users.

If you don’t define univperm in the FTPUSERS file, users will be prompted for a
password when they connect, and you will have to specifically set up a line in FTPUSERS
for each user. That’s not very practical, since PBBS users tend to come and go.

You will also need to add a line in FTPUSERS for each remote BBS you forward to, or
receive messages from. The premissions value may vary depending on what other
NOS services the remote system uses, but ______ is a good starting point.

Other PBBS Configuration Files

As the PBBS functions in JNOS and TNOS have grown more complete, several
additional files are now part of the picture. For example, each user on the PBBS can
have a signature file that is automatically appended at the end of each message they
send. TNOS adds to the AREAS file an AREAS.SYS file that allows additional control
over areas. TNOS also has several other features, including custom command scripts
and a help/tutorial system, that use configuration files. See the documentation for the
programs to learn more about these features.

151

Chapter

14
An Introduction to Unix TCP/IP

Part 4: The Fancy Stuff

Almost since the beginning, NOS running under MS-DOS has been starved for memory.
Most of the stability problems that people have reported come back to the fact that NOS
is a complex, sophisticated program—in many respects, it’s a complete operating
system—that strains DOS to its absolute limits. You can’t configure a DOS-based NOS
system to be a BBS, Convers bridge, and switch all at once, and expect it to stay up for
weeks on end. It can do any one of these things very well, but you can’t put 10 pounds
of potatoes in a five pound bag.

One answer to the problem is to move NOS to another operating system that can
better handle its demands. For years there have been versions of NOS that run on
UNIX operating systems, but they’ve never been too popular since UNIX itself was
unwieldy, expensive, and required more computer resources than most hams had
available. That’s changed in the last couple of years, though, as two “freeware” versions
of UNIX have become available. These are Linux and FreeBSD. Both are fully functional
operating systems that put some of their commercial counterparts to shame. Both come
with compete source code, and both will run on computers that many hams have
available today—a 386 or better with at least 4MB of RAM.

152 Chapter 14

PART 4 – The Fancy Stuff

The rest of this chapter focuses on Linux because there’s been more ham-related
development for it than there has been for FreeBSD, but the chances are things will
even out in the future. In particular, TNOS now runs under Linux, FreeBSD, and SunOS.

Linux currently offers two ways to get on the air with TCP/IP. Like most UNIX
implementations, it includes TCP/IP networking as part of its basic functionality; a
Linux system includes telnet, ftp, smtp, and other servers and clients. However, unlike
any other operating system in the world, Linux also supports the AX.25 protocol – and
therefore amateur TCP/IP – as a built-in feature. Alan Cox, GW4PTS, Terry Dawson,
VK2KTJ, Jonathan Naylor, G4KLX, and several others have developed drivers and
utilities for Linux that support AX.25 and allow you to put these services directly on the
air. If you want to put a system on the air that looks as much as possible like a “real”
network server, this may be the way to go.

The other approach is to use a version of NOS that’s been ported to Unix. Both TNOS
and JNOS currently have Linux versions. One of these systems running on top of Linux
or FreeBSD provides all the features of NOS with stability that’s at least an order of
magnitude greater than you’ll ever see under DOS. As I write this, the W8APR system,
which runs TNOS/Linux and serves as a full function PBBS, has been up for over 23
days and has processed over 17,000 messages since its last reboot. This may not be
unusual for some of the other PBBS programs, but for a NOS system under DOS it’s just
about unheard of.

The next few chapters describe how Linux can be used as the base for powerful amateur
radio TCP/IP systems. I want to provide you with enough information to get your
hands dirty, and that means I’ll unavoidably be “speaking Unix”, and specifically the
Linux dialect. If you’re unfamiliar with Unix, you will probably find a lot of the following
pages pretty strange; the next chapter provides a very brief Unix tutorial to help you
through the gobbledygook. If you’re interested in learning how to actually use Linux,
there are now quite a few books available that will help you get started. One very good
one is Running Linux by Matt Welsh and Lar Kaufman, published by O’Reilly
(ISBN 1-56592-100-3).

153

Chapter

15
A Linux Survival Guide

Part 4: The Fancy Stuff

There are a few common rules that govern all Unix systems. Keeping these in mind
will make Unix seem a bit less foreign to you.

Unix includes lots of documentation online; how useful it is, is a matter of debate.
You can find the manual page for standard commands by typing man <commandname>

at the prompt. Linux systems also include a documentation system called info and it
provides more detailed documentation for some programs. To use it, type info

<commandname>. Finally, many Linux distributions include a directory with
documentation for the various programs they provide. On a Debian Linux system, for
example, you can look under /usr/doc to find lots of “readme” files and other useful
stuff.

Unix is a multi-user system, and you have to create a user account with a login name
and (if you’re smart) password to get into the system. There’s a special user, called
“root”, who is all-powerful and can do anything on the system. You’ll need to be logged
in a root to do many of the activities described here; when you are, remember that you
have the power to wipe out the system if you’re not careful. The best rule is only to
login as root when you really need to.

154 Chapter 15

PART 4 – The Fancy Stuff

Unix has no “undelete” command. When you delete a file or a directory it’s gone
forever. “rm –rf *” (described below) are the most dangerous characters you can type
on a Unix system; will wipe out everything in the current directory and every
subdirectory below it – and if you issue that command from the root directory, you’ll be
reinstalling the system from scracth. Think twice and type once.

Unix uses the forward slash ("/"), instead of MS-DOS’ backslash ("\"), as a directory
separator. Unix uses the backslash character as an escape character.

Unix is case-sensitive. The file “autoexec.nos” is different then “AUTOEXEC.NOS”
or “AutoExec.nos”. Nearly all Unix command names, and most file names, are lower
case; mixed case is sometimes used to make long names easier to parse (like
“TheLatestVersion.txt”). All upper case either means you’re shouting, or the file is
imported from an MS-DOS machine.

Unix systems support long file names, so you may see some real monsters, particularly
in software packages that include lots of version information. For example, this is the
full name of the current version of Netscape Communicator for Linux:
communicator-v45-export.x86-unknown-linux2.0.tar.gz File names can include spaces
and other odd characters. To access a file with spaces in its name, put the name in
quotes, or add a backslash (“\”) before each space.

Although Unix supports long file names, that doesn’t mean it uses them. Many Unix
command names are short and cryptic. The most important are ls (list directory – by
itself, ls provides a short directory list; to see details like file modification date and size,
type “ls –l”); cp (copy file); mv (move or rename file); and rm (delete file). Most systems
have a program call less or more (less is derived from more; Unix programmers think
they have a sense of humor) that’s used to display text files a pageful at a time. To copy
two or more files into a single new file, the cat command works:

cat file1 file 2 > newfile

155

A Linux Survival Guide

Unix commands are stored in several directories, which may include /bin, /sbin,
/usr/bin, /usr/sbin, /usr/local/bin, and /usr/local/sbin. Your default path may not
include all these directories. To see what your path is, type “env” at the prompt. If the
file you need is not in one of the directories in your path, you can still run it by using the
full pathname. There’s a useful tool on Linux systems to help find commands. Type
“where <filename>” to see all the directories where the file is located. “whereis”
searches the most common directories, but not the entire system. To search for a file in
every nook and cranny, use the “find” command, like this:

fine / -name <filename> -print

<filename> can include wildcards. This search is exhaustive and may take some time.

The most common Unix text editors are called vi and emacs. vi is small, efficient, and
difficult to use, while emacs is large, bloated, and difficult to use. That’s not really fair
to either program; they both work well once you know how to use them, but
unfortunately, they both work differently from each other, and from any MS-DOS-based
editor you’ve likely used.

Unix software packages are usually packaged using a program called tar, which collects
a bunch of programs into a single archive. A program called gzip is used to compress
tar achives; the end result is roughly equivalent to a DOS “zip” archive. tar achives
have a default extension of “.tar” while gzipped files usually end with “.gz”; tarred
archives that have been gzipped often have a combined “.tgz” extension instead of
something like “.tar.gz” (though you may see that, too). To extract a tar file, you can use
the command tar xvf <filename>. To extract a gzipped tar file, add a “z” to the tar
options: tar zxvf <filename>. Unlike most Unix commands, there’s no dash (“-“) before
the option letters in tar. By the way, “gz” files aren’t compatible with DOS “.zip” files.
To create .zip files, you can use the zip and unzip programs included with most Linux
distributions. Each of the Linux distributions has it own, more sophisticated packaging
systems. Debian Linux packages end with the suffix ".deb", while RedHat Linux uses
".rpm". Each distribution includes its own package management program to work with
these files.

156 Chapter 15

PART 4 – The Fancy Stuff

Unix “programs” may be compiled binary files, like MS-DOS “.exe” files, but they
often are scripts that are run either by the shell (the shell is a program that provides the
command line interface to a user, much like COMMAND.COM in MS-DOS, and shell
scripts are much like DOS batch files) or an interpreter like perl. Unlike DOS, where
files you can run from the command line must end with “.COM”, “.EXE”, or “.BAT”,
most Unix programs don’t have an extension.

Some Unix command lines can be very long and may not fit on a single line without
wrapping. To make it easier to read such commands, you can break them into multiple
lines by using the backslash (“\”) character at the end of each line except the last. You
can also use tabs or spaces to indent the subsequent lines.15-1 Here’s a single command
split into multiple lines for readability:

/sbin/route add –net 44.71.36.0 \

netmask 44.71.36.255 \

mss 236 \

window 512 \

irtt 3000 \

ax0

Unix text files use the linefeed character at the end of each line, unlike MS-DOS, which
uses the carriage return/linefeed combination. Text files created under MS-DOS will
display in Unix as if they’re double-spaced, or with "^m" characters appearing at the
end of each line. Linux includes programs called todos and fromdos that will convert
files between the two end-of-line conventions.

If you need to read or write to an MS-DOS floppy disk, Linux includes a set of programs
that allow this. They include mcopy, mdel, and mmove.

15-1 Although Linux shell scripts and configuration files nearly always accept multiple backslashed lines, tabs and
spaces, and blank lines, there are some exceptions, so if you have unexpected errors try removing the formatting.

157

Chapter

16
NOS and Unix

Part 4: The Fancy Stuff

Why are JNOS or TNOS under Linux so much more stable than the same program
running under DOS? It’s very simple: Linux doesn’t have the 640k memory barrier
imposed by MS-DOS. NOS can use as much memory as it needs (within the memory
available on the system, of course), and this solves all sorts of problems. Also, since
Linux is a multitasking operating system that’s designed to do more than one thing at
once, it offers a much more hospitable environment for NOS, which itself is frequently
doing several things at the same time. It also offers better disk performance through its
disk buffering system.

OK, I admit it. The preceding paragraphs have been a blatant plug for the Linux
approach to NOS. But switching the W8APR BBS from JNOS under DOS to TNOS
under Linux has made our life much easier; system restarts now occur quarterly rather
than daily. This chapter focuses on TNOS since that’s what I’m most familiar with from
its use at W8APR; JNOS configuration is quite similar.

If you’re willing to climb the Unix learning curve, you can have the best of both worlds.
You can run NOS/Linux as the “radio front end” of a TCP/IP system where it handles
the radios and routes IP packets to the Linux networking code. This allows a blend of

158 Chapter 16

PART 4 – The Fancy Stuff

commercial strength IP services through Linux and full AX.25 services through the NOS
mailbox to lure folks in. In the past, to accomplish this requried a dedicated NOS/DOS
box to serve as the front end, connected via ethernet or serial cable to a separate Unix
system. NOS/Linux lets both pieces reside in the same machine. The rest of this chapter
describes how to implement this model.

Configuring TNOS under Linux

TNOS/Linux16-1 is available from several sources; the official site is ftp.lantz.com. The
package is available in both a compiled version, and as source code. Unlike DOS versions,
the precompiled TNOS/Linux binary has nearly all features compiled in – without a
640k memory limitation, there’s no need to scrimp on functionality. This means you
don’t need to worry about compiling a customized version.

Installing the TNOS Package

When you grab TNOS/Linux from a BBS or ftp site, it will be in a compressed “tar”
file with a name like “Tnos-2.30.tar.gz” or “TNOS230.tgz”. Login to your Linux system
as the root user, and create a directory to hold TNOS (the recommended directory name
is /nos and I’ll assume that’s what you’re using). Change directory to /nos and issue
the command

tar zxvf /tmp/Tnos-2.30.tar.gz

(substituting the full directory and filename of your TNOS tar file). You’ll see a progress
report on the screen as files are extracted and installed.

This process creates the directories that TNOS needs, and installs the programs and
sample versions of the configuration files.

16-1 The correct name is actually TNOS/Unix, because TNOS can now be compiled and run under several Unix-
like operating systems, including SunOS, FreeBSD, and Linux. I’ll call it TNOS/Linux here because I’m talking
about the Linux version, and specifically the pre-compiled Linux binary that’s available.

159

NOS and Unix

Configuration Files

Once you’ve installed TNOS, you should run the configuration program mksetup.tcl

which will create a customized autoexec.nos file based on your answers to a series of
questions. Once you’ve done that, you can fire up the program with the startnos

command to see if everything’s working. You’re not quite finished, though.

You’ll need to manually edit the other TNOS configuration files like alias, areas,
ftpusers, rewrite, and forward to match your requirements – if you don’t, you’ll be
running sample config files, and things won’t work properly. These files are in the
same format as their DOS counterparts, so the previous chapters on setting up DOS-
based TNOS systems will show you what to do. You may also want to manually edit
the autoexec.nos file that mksetup.tcl created for you; the setup tool does a good job,
but there are a number of things you may want to tweak.

Starting (and Restarting) TNOS Automatically

You can configure Linux to start TNOS automatically when the computer comes up,
and to restart it automatically if for some reason it exits. You can also tell TNOS to use
a specific virtual terminal (i.e., have it start in one of the other login windows that
Linux supports from the console). Virtual terminals are named /dev/ttyX, where X is
usually from 1 through 8, and you can switch to them from the local monitor and
keyboard by pressing function keys F1 through F8).

160 Chapter 16

PART 4 – The Fancy Stuff

The first step is to write a startup script that starts TNOS using a specific virtual
terminal:
#!/bin/bash
/nos/nos-start
See if TNOS is already running. If it is, stop it.
Then clean up the lock files and restart, redirecting
input and output to the device specified on the
command line. For example, “/nos/startnos /dev/tty5”
will start TNOS running on vt5; to get to it, hit
the F5 key from the local console.
#

kill running process
/bin/ps -aux | /usr/bin/grep “ ./tnos” |\
while read user pid rest
do

/bin/kill -STOP ${pid} 2>/dev/null
/usr/bin/sleep 2
/usr/kill -KILL ${pid} 2>/dev/null

done

remove lock files
/bin/rm /nos/spool/mqueue/*.lck 2>/dev/null
/bin/rm /nos/spool/mail/*.lck 2>/dev/null

get ready to start
cd /nos

set local timezone; change as appropriate
export TZ=EST5

set the terminal type
export TERM=console

pause to let everything catch up
/usr/bin/sleep 1

now start the program
exec ./tnos < $1 > $1 2>&1

Done.

This is a complicated script, but it provides clean startup and shutdown; thanks to
Mike Dent, G6PHF, for providing it.

161

NOS and Unix

After you create this file, make sure root owns it by issuing the command chown root

/nos/nos-start, and make it executable with the command chmod u+x /nos/nos-start.
Now, when you run this script from the command line as /nos/nos-start/dev/tty5 TNOS
will start on that virtual terminal; to shift to tty5 and see what’s going on, press F5.

The second step is to run this script as part of the Linux initialization process, so that
TNOS will automatically fire up when you boot the system. There’s a file called
/etc/inittab that controls how Linux starts. It runs the processes that generate login
prompts, as well as triggering the preliminary activities needed to get all the system’s
resources running. You can include a line in this file to run TNOS as part of the startup
sequence, and to restart (the technical term is “respawn”) TNOS if it should die.
/etc/inittab has a series of lines that define each of the virtual terminals. The line for
tty5 might look like this:

c5:23456:respawn:/sbin/agetty 38400 tty5

That line causes Linux to put a login prompt on tty5. We’ll modify it to start TNOS
instead by changing it to this:

c5:23456:respawn:/nos/nos-start /dev/tty5

Now, TNOS will run on tty5, and if it should die, the init program that reads the /etc/
inittab file will automatically restart it (that’s what the “respawn” keyword in the third
field signifies). To make this change take effect without rebooting the computer, type
telinit q at the command line. After a few seconds, press F5 (or whatever function key
corresponds to the virtual terminal you’ve chosen) and you should see the TNOS startup
screen. If you type “exit” at the TNOS command prompt, you should see it exit and
start again.

If TNOS doesn't start, keep cycling through the startup screen, or if you see an error
from inittan about "respawninf too fast", something is wrong. The most likely culpritys
are file permission problems, or incorrect pathnames.

162 Chapter 16

PART 4 – The Fancy Stuff

Connecting TNOS to the Linux TCP/IP Subsystem

I mentioned above that Linux includes its own complete TCP/IP implementation.
It’s possible to run TNOS under Linux as a front-end that routes packets from the radio
world to and from Linux’ TCP/IP services. It’s pretty easy to do, using a UNIX concept
called a pseudo-tty. A pseudo-tty (abbreviated as “pty”) lets two programs communicate
with each other as if each controlled a serial port, and the serial ports were cabled together
– it creates a logical pipe between them. Since a pty looks like a serial port, we can build
a slip16-2 link over it, and we can route data between TNOS and the Linux kernel’s TCP/
IP over that link.

Using a pty is much like hooking two programs together via a pair of physical serial
ports – that’s what the pty system devices look and act like to the programs using them.
ptys come in pairs. One is called the master and its name will be something like /dev/
ptyp1. The other is the slave and its name will be something like /dev/ttyp1. The
master and slave pair share the same last two characters in their names. In a typical
Linux system, something between 16 and 64 pty pairs are defined, with the first set of
16 identified as p0 through pf, the second as q0 through qf, etc. (the last character is
hexadecimal). The practical significance of the master/slave designation is that the
device using the master (ptyp) device must start first, and only then can the slave end
start using a ttyp device.

What IP addresses should the pty link use? Should both ends use addresses in the
44.x.x.x amprnet, or in some other network, or should the networks on each end be
different? Some may disagree, but I think the Linux end of the link should use a 44.x.x.x
address in the subnet that TNOS is using for its RF ports, and the TNOS end of the link
should use an address in the subnet that Linux uses for its network connection. If the
Linux system doesn’t have an Internet connection, the address used on the TNOS end
doesn’t really matter, and you can use any non-routed address you’d like,16-3 though
you should still use a 44.x.x.x address on the Linux end.

16-2 slip is the Serial Line Internet Protocol, described in Chapter 6.
16-3 There are IP networks set aside for “private network” use that you can use for this purpose. In amprnet,
44.128.0.0 is reserved for testing and private use, while addresses in the 192.168.0.0 range are used for private
networks in the Internet world. If you use an address in these networks, you must make sure that it is not routed
to the outside world.

163

NOS and Unix

Setting the addresses up this way makes routing simpler and the slip link transparent
because each side of the link appears to be local to hosts on the other side (for example,
radio users don’t need to deal with routing to a non-amprnet address). The Linux
machine has an amprnet address for users who want to reach it via the TNOS front end,
and TNOS has an Internet address so it is reachable from the outside world through its
Linux host. Using addresses in the same subnet on both ends of the link makes routing
more difficult in one direction or the other.

With appropriate routing statements at each end, and the proxy arp function discussed
earlier, users can connect use TNOS as a gateway to reach the Linux networking services,
and vice versa, without even knowing they’re going through a TNOS front-end. Here’s
how to configure both sides of your system to set TNOS up as a “front end processor”
for the Linux networking system.

Configuring the Linux Side

The Linux configuration file you need to modify will vary depending on your
distribution – you should try to configure the TNOS slip link in the file that contains the
other networking setup commands; unfortunately, various distributions set up
networking in very different ways. Appropriate places might be /etc/rc.d/rc.inet1 in
Slackware, /etc/rc.d/rc.local in Red Hat, or /etc/init.d/network in Debian.

The commands you enter will attach a slip network device to the master of a pty pair,
and then add appropriate routing commands. Here’s an example:

164 Chapter 16

PART 4 – The Fancy Stuff

Attach the first slip device to pty master ptyp9.
We start with a high number because telnet and other
services may use the lower pty devices. The speed
setting is a placeholder. The “&” tells Linux to
run the command and then return – without it the
system will hang! Assuming this is the first slip
link established, ptyp9 will bind to “sl0”.

/sbin/slattach -p slip -s 38400 /dev/ptyp9 &

Delay for a second to let things get set up.

/usr/bin/sleep 1

Configure the interface. The netmask, etc., are set
here to route one class C subnet via the slip link,
assuming there’s a default route that reaches every-
thing else. The pointopoint address is the address
that TNOS will assign to its end of the slip link.
The MTU should match what you’re using on the
radio channels.

/sbin/ifconfig sl0 44.71.36.2 \
netmask 255.255.255.0 \
broadcast 44.71.36.255 \
pointopoint 192.168.1.3 \
mtu 256

Set the route. On a slip link, the gateway at the
other end is implied and it doesn’t need to be
expressly set in this command.

/sbin/route add -net 44.71.36.0 sl0

If you have a home ethernet, or Internet access to your Linux machine, you need to
ensure that the Linux kernel on the TNOS machine is compiled with IP forwarding
enabled. You do this by answering yes to the appropriate question in the kernel
configuration script.

165

NOS and Unix

Proxy Arp Revisited

You also need to ensure that each machine on the local network, and your Internet
gateway if you have one, know that they need to route through the Linux machine to
get to TNOS (in effect, Linux acts as a gateway to reach TNOS). That usually means
adding a routing statement on every system. But there’s an easier way that makes the
slip link invisible to other users and makes the TNOS system look as though it is sitting
directly on the ethernet. You’ll remember that earlier we talked about “proxy arp” and
its ability to let one system pretend to be another. Now it’s time to use it.

Let’s assume for a minute that the local network is 192.168.1.0/24. Our gateway to
the Internet is 192.168.1.1. The Linux machine that hosts TNOS – call it “tnos-host” – is
192.168.1.2, and the TNOS end of the pty slip link is 192.168.1.3.

If the gateway machine wants to communicate with TNOS, it first sends an arp request
to 192.168.1.3. Since arp requests only travel on the local network, and don’t go through
routers, TNOS won’t hear the request and won’t respond. This is a problem, and it's
why we need to have explicit routes through gateways.

But tnos-host knows that it can route packets to TNOS (it has the right routing command
in place). By using proxy arp, it will respond to the Internet gateway’s arp request and
pretend to be 192.168.1.3. The gateway believes that response and sends the packet to
tnos-host, which then forwards it via the pty slip link to TNOS. The packet gets where
it’s supposed to be, and no one's the wiser. The value of proxy arp is that it eliminates
the need for additional routing statements to handle one-off situations such as our hidden
TNOS problem. Figure 16-1 shows how this works.

It’s easier to implement proxy arp than to describe it. You need to know two pieces of
information – the IP address of the system that you are impersonating, and the hardware
address of the interface on which you’re going to do the impersonation. The IP address
is the address assigned to the TNOS end of the slip link. The hardware address is
probably the address of your ethernet card.

166 Chapter 16

PART 4 – The Fancy Stuff

To find the hardware address, issue the ifconfig command and look at the “Hwaddr”
field relating to your network card (probably interface “eth0”). If it’s an ethernet card (a
likely bet on the Linux side), the address will be six two-digit hexadecimal numbers
separated by colons. Add this command at the end of the pty slip link configuration
(after the /sbin/route/statement), using the address of the TNOS end of the slip link,
and the hardware address:

/sbin/arp -s 192.168.1.3 00:20:18:10:8e:70 pub

Remember that if you change network cards in the computer, you’ll have to find the
new hardware address and change the command to match it.

By running these commands as part of your network initialization at boot time, the
master end of the pty slip link will be ready and waiting when you bring up TNOS.

ke8tq-2
44.71.36.18

n8ur

route add default eth0 44.71.36.33

QST -
Who is 44.71.36.32

rf-k8gkh
44.71.36.33

route add 44.71.36.32
arp publish 44.71.36.32 ax25 k8gkh vhf

(lying) I am 44.71.36.32
de k8gkh

Ethernet

add information
to system

Figure 16-1 - Proxy Arp

167

NOS and Unix

Configuring TNOS

To set up the TNOS end of the slip link, you need to include commands like these in
AUTOEXEC.NOS (probably located near your other attach and routing commands):

Attach the interface to the Unix kernel. Use

the slave end of the pty pair set up in the

Linux network configuration

attach asy ttyp9 - slip sl0 2128 1064 38400 c

These commands set buffer sizes. Adjusting them

may improve performance on your system; see the TNOS

docs for more details.

asyconfig sl0 rxqueue 30

asyconfig sl0 txqueue 10

The following ifconfig commands set the

interface parameters.

ifconfig sl0 description “Slip Link to Linux”

ifconfig sl0 ipaddress 192.168.1.3

ifconfig sl0 broadcast 192.168.1.255

ifconfig sl0 netmask 255.255.255.0

ifconfig sl0 tcp irtt 100

The following is in addition to your other

routing commands. It is the route to the Linux

end of the slip link.

route add [44.71.36.2] sl0

With a couple of minor differences, these commands are the inverse of the ones we
use to set up the Linux side.

168 Chapter 16

PART 4 – The Fancy Stuff

It’s also possible to use proxy arp in TNOS to make the Linux system available on the
air as if it had radios directly connected:

This command uses proxy arp to make TNOS respond

to arp requests for the Linux address. See the

discussion of proxy arp earlier in the book for

more details.

arp publish [44.71.36.2] ax25 W8APR vhf

arp publish [44.71.36.2] ax25 W8APR uhf

TNOS requires an “arp publish” command for each interface. The hardware address
is the TNOS callsign.

Summary

By setting up a slip link using a pseudo-tty pair, we can link TNOS to its Linux host
and allow data to flow between them as if they were two independent systems. Enabling
proxy arp on the Linux side makes TNOS visible to the Linux network (which may be
another machine linked via ethernet, or a gateway to the Internet). Enabling proxy arp
on the TNOS side makes all the Linux TCP/IP services available to the RF network via
TNOS. Using “opposite” addresses on the slip link (amprnet on the Linux side and
Internet on the TNOS side) simplifies routing and makes the configuration transparent
to users.

169

Chapter

17
Using Linux Native AX.25

Part 4: The Fancy Stuff

The previous chapter described how to use TNOS as a “front end” to Linux’ native
TCP/IP system. Thanks to work by Alan Cox, GW4PTS, Jonathon Naylor, G4KLX,
Terry Dawson, VK2KTJ, and others, Linux also has built-in support for AX.25. This
means it can directly control KISS TNCs and other AX.25 devices, and you can put a
Linux system directly on the air for AX.25, NET/ROM, ROSE, and TCP/IP without
running NOS. Until recently, this feature was best considered as experimental code,
but with the release of version 2.0 of the Linux operating system kernel the AX.25 support
has reached a level of real usefulness.

Linux is the first operating system in the world to have built in support for the AX.25
protocol, and that opens up a world of applications for the Linux packet radio user.
What does that mean, and how can we use it?

Like other UNIX systems, Linux has TCP/IP networking built in and very tightly
integrated with the rest of the system. Unlike MS-DOS, networking is not an “add on”
to Linux. However, most UNIX systems are designed around Ethernet or other
high-speed network hardware (though most have support for serial-port networking
as well). What Linux adds is the ability to communicate using AX.25 as well as Ethernet.
You can hook a KISS TNC to the serial port on a suitably-configured Linux system and

170 Chapter 17

PART 4 – The Fancy Stuff

provide access via “straight” AX.25 as well as TCP/IP and NET/ROM. Linux includes
not only the basic hardware support for AX.25, but also the ability to adjust parameters
to make the networking code work efficiently on slow radio channels.

Linux’ AX.25 support is very flexible. A user connecting via AX.25 or NET/ROM can
be given a login prompt that allows direct access to any program on the computer as if
they were logged in at a local console, sent to a program (like a BBS package), or receive
a NET/ROM-like node prompt. A user connecting via AX.25 TCP/IP can do anything
they could do via an Ethernet connection: remote login, file transfer, email transfer, etc.

The really exciting thing about Linux AX.25 is that it provides a platform that makes it
very easy to develop applications for users. It’s easy, using one of several programming
languages and tools, to set up all sorts of useful programs that can serve your local
network. Unlike JNOS or TNOS, a Linux application doesn’t need to recreate the
complete hardware interface, AX.25 layer, IP layer, and TCP layer – the programmer
can concentrate on the application code. Using tools like perl, you can write a TCP
server in just a few lines of code. A Linux system also has the potential of making a very
good router that can handle NET/ROM and TCP/IP switching duties with good
performance and high reliability.

Configuring Linux AX.25

Adding AX.25 capability to a Linux system requires compiling a Linux kernel that
includes AX.25 support, obtaining and compiling the utility and application programs
that interface with the kernel, and setting up a number of configuration files. I’ll describe
the process here, but before you try it yourself, you should look at the AX25-HOWTO
document that’s available by ftp or http from a number of sites, including
http://sunsite.unc.edu/mdw/HOWTO/AX25-HOWTO.html. The AX.25 programs are
still maturing, and the HOWTO is the best guide to obtaining and installing the most
recent version.

171

Using Linux Native AX.25

A Note About Versions

Linux continues to evolve, and as it does the AX.25 support evolves with it. As I write
this in early 1999, there have been two recent changes to Linux that will impact your
installation.

First, the AX.25 support built in to the kernel has been updated. Users of kernel version
2.0.35, 2.0.36, or any kernel greater than 2.2.0 will have the new support. If you’re using
an older kernel, follow the steps in the section entitled “Applying AX.25 Updates to the
Kernel Source.” Even if you are using a new kernel, you will need to configure it to turn
on AX.25 support.

The second change is an update to the standard Linux library – a file called libc that is
used in compiling programs. During 1998 Linux distributions such as Red Hat and
Debian started to switch from version 5 of libc to version 6. The change requires that
some programs be modified before they can be compiled. If you are using a “libc6”
system, you need to make sure that you have a version of the AX.25 programs that
supports the new library. The correct program versions are available from TAPR and
other sources.

Configuring and Building the Kernel

Most of the pre-compiled kernels included with Linux distributions do not have AX.25
turned on, so you’ll need to compile your own kernel. Don’t worry – it’s not difficult to
do. First, you’ll need to make sure the “gcc” compiler and its associated tools are installed
on your system. If you find a file called “/usr/bin/gcc” you’re in business. Next, get a
copy of the kernel source code file. The latest version is available via ftp from a number
of sites on the Internet, including ftp://sunsite.unc.edu in the /pub/Linux/kernel
directory. The kernel file is several MB in size these days, and can’t be put onto a single
floppy; keep that in mind if you need to transfer it from another machine.

172 Chapter 17

PART 4 – The Fancy Stuff

Log in to your system as root and unpack the source code archive into the /usr/src/
directory using commands like this:

cd /usr/src

tar zxvf linux-2.2.0.tar.gz

cd /usr/src/linux

Next, you need to install links for some “include” files (these steps are included in the
“README” file in the kernel source directory; you should always read that file for any
changes that may have occurred):

cd /usr/include

rm -rf linux

rm -rf asm

ln -s /usr/src/linux/include/linux linux

ln -s /usr/src/linux/include/asm asm

ln -s /usr/src/linux/include/scsi scsi

cd /usr/src/linux

Finally, you need to create a configuration file that specifies the hardware and software
features you want to include in the kernel. Do this is by entering the command “make
config” or, for a slower but more user-friendly approach, “make menuconfig”. Either
way, you will be guided through a series of questions that require yes or no answers.
The default answer will be capitalized, and will be used if you hit the return key in
response to the question.

There may be all sorts of things you want to turn on and off, but the critical ones for
AX.25 are:

Networking support (CONFIG_NET)

Amateur Radio AX.25 Level 2 (CONFIG_AX25) YES

The following provides G8BPQ-over-ethernet capability

AX.25 over Ethernet (CONFIG_BPQETHER) OPTIONAL

The following enables the NET/ROM protocol

Amateur Radio NET/ROM (CONFIG_NET/ROM) OPTIONAL

173

Using Linux Native AX.25

There has been built-in support for AX.25
available in the Linux kernel for a long time,
but during 1997 and most of 1998 the AX.25
development effort resulted in changes that
greatly improved the quality of the support.
As noted above, that code made it into kernel
version 2.0.35 and later. Although the AX.25
code included in the kernel distribution for
versions 2.0.34 and earlier works, it is not
nearly as solid as the later code. So, if you’re
wise, you’ll make sure that you’re using a
kernel that includes the latest version of the
AX.25 code.

What that means is that if you’re using a
kernel version from 2.0.0 through 2.0.34, you
need to follow these steps; if you’re on version
2.0.35 or later (including any of the 2.2.x series
(17-1)), you can skip them. If you’re using a
kernel version lower than 2.0.0, you need to
update your system!

After installing the Linux kernel sources but
before running the configuration program,
you’ll need to obtain the ax25-module patch
file from TAPR, zone.psft.fi/~jsn, or some
other source. The current, and probably last,
version is ax25-module-14f.tar.gz. Extract the
patch file into the Linux kernel source
directory (usually /usr/src/linux): tar zxvf
ax25-module-14f.tar.gz. You’ll end up with a
“readme” file or two, and another file with a
ridiculously long name, like “ax25-2.0.31-
2.1.47-3.diff” which is a set of changes that
you’ll apply to the kernel source code tree with
the patch command: patch –p0 ax25-2.0.31-
2.1.47-3.diff 2> patch.error (if you get an error,
or patch stops to ask you for a file name, you’ll
need to change the –p parameter to another
value, usually 1). Any error messages will be
sent to the patch.error file. You should scan
through that file to see if there are any
messages indicating failed or rejected patches;
if there aren’t any, the patch was applied
successfully and you’re ready to proceed.

In addition to KISS over a standard serial port (which will be automatically enabled),
Linux supports several packet radio interface cards. In the “Drivers” section of the
configuration program, you’ll be allowed to include the following drivers if you answer
"yes" to the question “Radio network interfaces (CONFIG_NET_RADIO)” (note that
you may need to request “experimental” drivers to see all of these):
BAYCOM ser12 and par96 kiss emulation driver for AX.25 (CONFIG_BAYCOM)

Gracilis PackeTwin support (CONFIG_PT)

Ottawa PI and PI/2 support (CONFIG_PI)

Z8530 SCC kiss emulation driver for AX.25 (CONFIG_SCC)

Applying AX.25 Updates to the Kernel Source

17-1 Kernels in the 2.1.x and 2.3.x series are development kernels, and I don’t recommend that you use them in a
production system.

174 Chapter 17

PART 4 – The Fancy Stuff

The config program allows you to define many of the options as modules. Doing so
results in the driver being compiled as a separate chunk of code that’s not included in
the main kernel, but which can be installed when needed either manually, with a program
called modprobe, or automatically if you have configured your system to use a daemon
called kerneld. If you’re using modules, you need to carefully read the file to learn the
necessary tricks (/usr/src/linux/Documentation/modules.txt).

Although modules are a really neat idea, and work very well in systems where the
options in use change frequently, their advantages aren’t as great if the drivers are in
use all the time, which is likely if you’re using AX.25 services. I generally compile the
AX.25 options as kernel built-ins, rather than as modules.

Once you’ve finished the configuration script, type the following commands to compile
the kernel:

make dep

make clean

make zlilo17-2

If you’ve chosen to build any options as modules, you’ll also need to issue these two
commands after the compilation process is complete:

make modules

make modules_install

17-2 The “make zlilo” command may not work with older kernels. If it doesn’t, you can use “make zImage” instead
and then issue the following set of commands when compilation is complete:

cd /

mv vmlinuz vmlinuz.old

cp /usr/src/linux/arch/i386/boot/zImage /vmlinuz

/sbin/lilo

/usr/sbin/rdev -R /vmlinuz 1

175

Using Linux Native AX.25

Go have a cup of coffee (or several), because the compile process could take from
fifteen minutes to a couple of hours, depending on how fast your system is. After you
reboot the computer with the “/usr/sbin/shutdown -r now” command, you should be
running the new kernel with AX.25 support.

Installing the AX.25 utilities and user programs

In addition to including AX.25 support in the kernel, there are several utility and
application programs necessary to make everything work. If you have a recent Linux
distribution (particularly one that includes a version 2.0.x or 2.2.x kernel), versions of
the standard networking utility programs that support AX.25 are probably already
installed. If you don’t have them, you’ll need to get the “net-tools” package and install
it (since most recent systems include versions of these programs, I won’t go into the
installation instructions here).

You’ll also need the AX.25 user programs, which again may be included in recent
Linux distributions, or are available on the Internet (from http://zone.pspt.fi/~jsn,
although they are also available from the TAPR site). As I write this, the current version
is “ax25-utils-2.1.42a-tar.gz”, which will work with kernel versions 2.0.35, 2.0.36, or 2.2.x,
or with versions 2.0.33 or 2.0.34 that have been patched as desribed above.

There’s also a version of the ax25-utils package with “2.0.” in its name instead of “2.1.”
That version is for use with unpatched kernels that still use the old AX.25 code, and
should not be used if you are using a newer kernel, or have followed the directions I
gave above to update the kernel AX.25 code.

176 Chapter 17

PART 4 – The Fancy Stuff

Grab the appropriate ax25-utils archive file and do the following as root (after installing
the ax25-module kernel patches, if your kernel version requires them):

cd /usr/src

tar zxvf ax25-utils-2.1.42a.tar.gz

cd ax25-utils-2.1.42a

make config

make install

The “make config” command will configure the programs for your system, and “make
install” will compile and install the programs. It will also install a set of man pages
(Unix documentation) for just about every ax25 program and file. You can view these
with the man command.

Configuring Linux AX.25

Now that you’ve installed the software, you need to set up several configuration files
that define your AX.25 setup, and probably issue some commands to configure AX.25
parameters. All the configuration files are located in /etc/ax25 (note that in earlier versions
they were put in /usr/local/etc; this changed with the 2.0.12 release and matching
utilities), and the configuration commands are all in /usr/sbin.17-3 By the way, since
many Linux/AX.25 users will be running applications such as the F6FBB PBBS software
on their systems, and the configuration process touches on – and is affected by – some
of these additional services, in the sections that follow I’ll describe overall AX.25
configuration, and not limit myself strictly to TCP/IP issues.

In Linux systems, network devices like ethernet cards or TNCs must have an interface

name that uniquely identifies that device. Some interface names, like those for network
cards, are created automatically by the kernel. If you have an Ethernet card in your
system, you have an interface named eth0 that comes into being when the driver for the
card is loaded.

17-3 In this chapter, I’ll usually refer to programs by their full pathname. If your system has a PATH variable that’s
fairly normal, you may be able to type just the command name, without the path. It’s always a good idea, though,
to use the full pathname in any script, because you can’t guarantee what the PATH variable will say when the
script is executed.

177

Using Linux Native AX.25

On the other hand, the kernel can’t create some types of network interfaces
automatically, because the hardware may be used for different purposes. For example,
a serial port may be used to talk to a KISS TNC, instead of the more traditional use with
a modem or a terminal, or for a slip or ppp link. Special programs are used to turn such
hardware into network interfaces. A program called slattach can be used to configure a
serial port to work as a slip link. When slattach is run, it creates an interface name for
that port (the name will be something like sl0).

AX.25 network devices work the same way. Since it’s a single-use device, the kernel
driver for a board like the Ottawa PI card will automatically create the interface and
name it. But to use a serial port to drive a KISS TNC, you need to use a program called
kissattach to configure the port and give it a name. The syntax for axattach is
simple:

/usr/sbin/kissattach -i 44.71.36.8 \

-m 256 /dev/ttyS1 vhf

This command turns serial port “/dev/ttyS1” into an AX.25 port named “vhf”, gives
it an IP address of 44.71.36.8 (the “-i” flag, and assigns an mtu of 256 to the port (the “-
m” flag). It will also create a network interface called "ax0" (for the first TNC attached).
Further parameters for this device, like its speed, are set in the axports file described a
bit later.

The port name is used by most of the ax25 utility programs, while the network interface
name is used by Linux network programs like ifconfig.

Callsign Confusion

Simply creating a network interface isn’t enough. You also need to assign a callsign to
the interface and set basic operating parameters. One aspect of Linux AX.25 that’s
different from NOS is that you can’t get away with just one call (in this discussion,
when I talk about “call” I mean a unique callsign/SSID combination) for the whole
system. You’ll need at least one call for each physical port, plus perhaps several others

178 Chapter 17

PART 4 – The Fancy Stuff

for specific services. Turning this requirement into practice is one of the most confusing
things you’ll have to deal with if you’re building a system with more than one radio
interface, or that uses NET/ROM as a protocol. Here’s the scoop.

You need to have a unique call assigned to each physical port (i.e., a TNC or other
device hooked to a radio) on the system. These calls will be used as the “from” callsign
for outbound TCP/IP packets. Although you can use these calls for other AX.25
programs, you don’t have to. And, as long as you send a legal ID according to the
requirements of your regulatory authorities, the calls used for physical ports don’t have
to be real – you can use made-up calls for these ports if you want.17-5 In a system
configured the way I describe here, these calls will only be used for outbound IP traffic
and won’t be used for AX.25 or NET/ROM connections; users don’t need to know about
them.

Next, you need to have calls associated with “virtual” ports such as NET/ROM or
AX/IP. Under some circumstances, these calls can be shared with other services. In the
configuration described here, there is one unique NET/ROM call that’s used on the air;
two other NET/ROM ports (one for the BBS and one for the node software) share calls
used by other services. The AX/IP daemon, if you use one, will require one call of its
own.

Finally, there are the calls used by servers. In our system, there are two services that
listen directly for, and respond based on, calls. One is the ax25d daemon that parcels
most incoming AX.25 connect requests to the appropriate place (like the LinuxNode
software that provides a G8BPQ-like user interface), and the other is the F6FBB PBBS
software that listens for its own callsign. The rule here is that the FBB call (configured in
FBB’s init.srv file) must not be used by any other service. More generally, servers that
listen directly to interfaces cannot share calls with one another. The only exception is
that the FBB call can (but need not) be shared with the NET/ROM port it is listening to.

17-5 Some countries view fake calls in the AX.25 “FROM” field to be a violation of the rules, so you’ll need to
determine for yourself whether you can get away with this.

179

Using Linux Native AX.25

The ax25d configuration file allows great flexibility — it can be set up to listen and
respond to any call on any port. Unfortunately, FBB doesn’t use it. But for other
applications, like the LinuxNode software, you can configure the system to use the
same or different callsigns on each port, have different programs run depending on the
call used, and have different actions occur based on the user’s call. This is all described
below.

One suggestion from Linux/AX.25 gurus, and one that I follow on the systems I run,
is to start with a high SSID for the hardware ports, and work your way down, while
starting with low SSIDs on the service ports. Here’s a list of call allocations for a
hypothetical and moderately complex system that illustrates this:

Hardware and virtual ports
W8APR-14 2m 1200 baud port with KISS TNC
W8APR-13 UHF 9600 baud port with KISS TNC
W8APR-12 19.2kb UHF port with Ottawa PI card
W8APR-11 NET/ROM default port
W8APR-10 AX/IP port

Services ports
W8APR-0 F6FBB User Port
W8APR-1 Node Front End
W8APR-2 DX Cluster
W8APR-3 Callbook Server
W8APR-4 APRS Digi

180 Chapter 17

PART 4 – The Fancy Stuff

The AXPORTS File

The minimal (and mandatory) configuration of AX.25 ports is done through a text file
called /etc/ax25/axports which has one line for each physical AX.25 interface. The call
set here is the one used for TCP/IP connections, and by default for other services unless
overridden. The file should look something like this:

axports file; the format is:

portname, call, speed, paclen, window, description

portnames for KISS TNCs are those assigned

with axattach

vhf W8APR-14 4800 256 3 2M 1200 baud radio port

uhf W8APR-13 19200 256 3 UHF 9600 baud radio port

PI card uses a portname that’s the same as auto-

 # assigned interface name. Setting the speed to 0

means that the card gets clock rate externally

pi0a W8APR-12 0 256 3 UHF 19.2 radio port

The NRPORTS and NRBROADCAST Files

If you’re going to configure NET/ROM in your system, you’ll need to configure these
two files and at boot time, start the netromd daemon that manages the NET/ROM
routing broadcasts. Although NET/ROM can work adequately for IP routing with only
a single defined port, if you want to offer user access I suggest you set up two, and
possibly three or four, NET/ROM logical interfaces. One is the mandatory default
interface, using W8APR-11 in our example. The second is listened for by ax25d and
runs the LinuxNode software when used to make a connection request, and the third
does the same thing for the F6FBB program if you use it. A fourth could be used to
allow direct access to a convers node; we’ll describe that in a later chapter.

181

Using Linux Native AX.25

The /etc/ax25/nrports file defines these logical interfaces. Here’s an example:
/etc/ax25/nrports

#

The format of this file is:

#

name callsign alias paclen description

netrom W8APR-11 #MVFMA 235 Switch

netbbs W8APR-0 MVFMA 235 FBB Port

netnod W8APR-1 BBROOK 235 Node Port

With this configuration, users who connect to either W8APR-0 or MVFMA will be
connected immediately to the F6FBB program. Those connecting to W8APR-1 or
BBROOK will get to the LinuxNode front end. Users never need to use, and will never
see, the W8APR-11/#MVFMA call, but that is what will appear on NET/ROM network-
level packets (for example, level 2 connections between two nodes, or routing messages).
Note that the default port is tied to an alias that begins with a “#” sign. That will keep
it from showing up in standard node lists; users listing nodes will only see the MVFMA
and BBROOK aliases.

The /etc/ax25/nrbroadcast file sets up the NET/ROM network-layer parameters. Here’s
a sample nrbroadcast file:

/etc/ax25/nrbroadcast

#

The format of this file is:

#

ax25_name min_obs def_qual worst_qual verbose

pi0a 5 250 150 0

182 Chapter 17

PART 4 – The Fancy Stuff

In this case, we are broadcasting NET/ROM info on one port. It’s a high-quality, fast
link, so the default quality is set to 250. We only want fairly high quality nodes to show
up via this port, so the minimum quality is set to 150. Setting verbose to 0 means that
we’ll broadcast only our own node information on this port, and not the whole routing
table. We could, of course, broadcast routing on multiple ports if we wanted to. There’s
no provision in this file to set the NET/ROM timers. You can set the broadcast interval,
which defaults to 60 minutes, by passing an appropriate command to the netromd
daemon when it is started: /usr/sbin/netromd –t 15 to set the broadcast interval to 15
minutes, for example.

Other Parameter Setting

In the chapters on NOS, I went into painful detail about setting low-level parameters
such as TXDelay, paclen, mtu, etc. How are those things set in a Linux/AX.25 system?
There are several different tools that you’ll use to tune your system.

First, the lowest level hardware settings are configured by a device-unique
configuration program. For example, /usr/sbin/kissparms will set the TXDelay, slottime,
ppersist, and other values for a KISS TNC, and piconfig and sccinit do the same thing
for PI cards and generic 8530 cards (like the DRSI card) respectively. A typical kissparms
command might look like this:

kissparms -p vhf -t 300 -s 300 -r 32

This sets the TNC attached to port vhf to a TXDelay of 300 milliseconds, slottime of
300 milliseconds, and a ppersist value of 32. kissparms can also be used to take a TNC
out of KISS mode and back into normal command mode by issuing the command:

kissparms –p vhf x

The second group of parameters, those which operate at the AX.25 protocol level,
may be set for each interface by accessing a file in the special directory (actually,
filesystem) called /proc. If you cd into the directory /proc/sys/net/ax25, you’ll see a
directory for each of the physical network interfaces on the system, like ax0 or pi0a.

183

Using Linux Native AX.25

 This is one place where the distinction between a network device or interface and a
port is important. Even though you assign a name like “vhf” to your KISS TNC with
the axattach command, to the system, the first attached TNC gets the device name ax0,
the second ax1, etc.

If you go into one of these directories, you’ll see a bunch of files, each of which contains
only one line with a single value. Here’s what they are, and what they mean:
FileName Meaning Values Default

ip_default_mode IP Default Mode 0=DG 1=VC 0

ax25_default_mode AX.25 Default Mode 0=Normal 1=Extended 0

backoff_type Backoff 0=Linear 1=Exponential 1

connect_mode Connected (VC) Mode 0=No 1=Yes 1

standard_window_size (MAXFRAME) 1 <= N <= 7 2

extended_window_size Extended Window 1 <= N <= 63 32

t1_timeout T1 Timeout (FRACK) 1s <= N <= 30s 10s

t2_timeout T2 Timeout (RESPTIME) 1s <= N <= 20s 3s

t3_timeout T3 Timeout (CHECK) 0s <= N <= 3600s 300s

idle_timeout Idle Timeout 0m <= N 20m

maximum_retry_count N2 1 <= N <= 31 10

maximum_packet_length AX.25 Frame Length 1 <= N <= 512 256

Most of these should be familiar to you by now. The parallel “extended” settings are
for a new mode of AX.25 that allows more frames to be in transit at any time. It’s
supported (at present) only by Linux, so it isn’t very useful in mixed environments and
you can probably ignore those settings.

You can change these values by changing the values in the files. However, these aren’t
real disk files that you can use an editor on; they’re actually a way to look into the
kernel’s data tables stored in memory. To change them, you need to use the echo

program, which dumps text to its standard output. Here’s an example of how to change

184 Chapter 17

PART 4 – The Fancy Stuff

the value of the standard_window_size, or MAXFRAME, parameter from the default
of 2 to 4 for the ax0 interface:

echo 4 >/proc/sys/net/ax0/standard_window_size

If you’re changing many of these values, you’ll want to write a script that runs at boot
time to set these values automatically. Alternatively, I’ve written a little script called
axsetparms that, together with a couple of helper scripts, lets you easily edit and reset
these values. axsetparms and its helpers are available from the TAPR site.

Next, you’ll want to set IP and TCP parameters. These are controlled by the ifconfig
and route commands. The ifconfig command allows you to set the maximum
transmission unit (mtu) as well as the IP address, network mask, broadcast address,
and other values of an interface. Here’s an example:

/sbin/ifconfig ax0 44.71.36.2

/sbin/ifconfig ax0 hw ax25 w8apr-14

/sbin/ifconfig ax0 broadcast 44.71.36.127

/sbin/ifconfig ax0 netmask 255.255.255.128

/sbin/ifconfig ax0 arp # enables arp protocol

/sbin/ifconfig ax0 mtu 256 \

/sbin/ifconfig ax0 up # turns the interface on

You can supply multiple options to a single ifconfig command, but this example breaks
each option into a separate command for clarity. ifconfig uses the interface name, rather
than the port name.

You can specify the initial round-trip-time in milliseconds, the maximum segment
size (mss) and the window separately for each route on the system using the route
command:

/sbin/route add -net 44.71.36.128 irtt 1500 \

mss 216 window 256 pi0a

185

Using Linux Native AX.25

Since the Linux networking code assumes that it’s working over an ethernet, the default
values for these parameters are far from optimal for a radio channel. For example, the
MTU defaults to 1500 bytes, the window and mss values may be several kilobytes, and
the irtt is very short. You’ll definitely want to use ifconfig and route to optimize your
system for radio use.

These are the main tools you will use to configure your system, but there are others
available. The arp command allows you to manipulate the arp tables and configure a
proxy arp if you need one. The axparms program can be used to manipulate the AX.25
routing table, to change the callsign associated with the port, or to associate specific
incoming callsigns with system usernames (this allows AX.25 users to appear to the
system as if they are logged in).

Once you have the AX.25 configuration complete, you can test it using the call and
listen programs (both found in /usr/bin since they’re end user, and not system,
programs). call can be used to establish an outbound AX.25 connection:

/usr/bin/call vhf KE8TQ

The two parameters are the interface name, and the call of the station you’re trying to
reach (you can also include digipeaters). Once you’ve established a connection, you’ll
be in a line-oriented program that operates much like the Unix cu program. What you
type is sent to the other station, and what the other station sends is displayed on the
screen. Commands for the local system begin with a tilde (“~”) character. To close the
connect, issue the command “~.” (tilde, followed by a period) at the beginning of the
line.

The listen program lets you monitor traffic on an AX.25 interface. You can invoke it
by typing

/usr/bin/listen

and your screen will display the incoming traffic from all AX.25 interfaces. listen

186 Chapter 17

PART 4 – The Fancy Stuff

offers several options to tune the display; the most useful is probably the “-p
<portname>” command that lets you choose a single port to monitor. To end a
monitoring session, type control-C at the console.

Configuring TCP/IP over AX.25

Once you’ve set up the AX.25 interfaces and verified that they work, you need to
configure IP routing for your radio interfaces. To do this, use the route command just
as you would for an ethernet or slip route. For example, to send all ampr network
traffic out via interface vhf, use the following command:

/sbin/route add -net 44.0.0.0 vhf

As noted above, you can include mss, window, and irtt values in the route command,
and to optimize performance you should do so.

Congratulations! You’ve just put your Linux system on the air. Amateurs accessing it
via TCP/IP will be able to use any of the network facilities on your machine – ftp,
telnet, smtp, even the Worldwide Web. 17-6

Automating the AX.25 Configuration

You probably noticed that several different programs are used to configure the AX.25
networking system. It would be a real pain to have to manually type all those commands
each time you fired up the computer. You can avoid that by adding those commands to
the Linux startup process.

Although different distributions of Linux do it in slightly different ways, using different
file and directory structures, all Linux systems execute a series of runtime scripts (roughly
equivalent to MS-DOS batch files on steroids) at startup. One of these scripts is usually
called rc.local and it’s typically located in a subdirectory of the /etc directory (often
/etc/rc.d). You can insert the AX.25 configuration commands in this file, and they’ll be

17-6 Of course, there's much more tweaking you can do to your network configuration; see a Linux "Network
Administration" book for details.

187

Using Linux Native AX.25

executed at startup.17-7 Here’s a sample rc.local file that sets up the W8APR system:

#!/bin/sh
/etc/rc.d/rc.local

echo Starting AX.25 networking services:

ax ports are:
vhf — 145.61 1200 baud (KISS TNC)
pi0a — UHF 19.2 repeater (PI Card)

set up the TNC
/usr/sbin/kissattach /dev/ttyS0 vhf
/usr/sbin/kissparms -p vhf -t 250 -s 250 -r 32
/sbin/ifconfig vhf 44.71.36.2 hw ax25 w8apr-14
/sbin/ifconfig vhf broadcast 44.71.36.127
/sbin/ifconfig vhf netmask 255.255.255.128
/sbin/ifconfig vhf arp mtu 256 up
/sbin/route add -net 44.71.36.0 \

irtt 4000 mss 216 window 256 vhf

configure the Ottawa PI card
/usr/sbin/piconfig pi0a speed 19200 txdelay 30 \

persist 32 slot 30 squelch 1
/sbin/ifconfig pi0a 44.71.36.130 hw ax25 w8apr-13
/sbin/ifconfig pi0a broadcast 44.71.36.255
/sbin/ifconfig pi0a netmask 255.255.255.128
/sbin/ifconfig pi0a arp mtu 256 up
/sbin/route add -net 44.71.36.128 \

irtt 1500 mss 216 window 256 pi0a

use axsetparms script to copy device
parameters from /etc/ax25/parms into
/proc/sys/net/ax25
/usr/sbin/axsetparms

attach the NET/ROM device
/usr/sbin/nrattach -i 44.71.36.1 netrom
/usr/sbin/nrattach -i 44.71.36.1 netbbs
/usr/sbin/nrattach -i 44.71.36.1 netnod

17-7 The rc.local script is usually the last of the runtime scripts to be executed, so all the other system and
networking daemons will be running by that time. That’s normally not a problem, but if it is, there are usually one
or more runtime scripts that configure the traditional network services, and you could inclde the AX.25
commands there.

188 Chapter 17

PART 4 – The Fancy Stuff

set up the AX/IP port
/usr/sbin/kissattach -i 44.71.36.1 /dev/ptyqf axip

set associations so a few of us can login
to the node locally
/usr/sbin/axparms -assoc ke8tq fmp
/usr/sbin/axparms -assoc n8ur jra
/usr/sbin/axparms -assoc n8bjq n8bjq

start the daemons
/usr/sbin/ax25d
/usr/sbin/netromd
/usr/sbin/mheardd
/usr/sbin/ax25ipd

note that the following two commands require
the “&” to put them in the background. Without
it, the script will hang forever.
/usr/sbin/axdigi &

/var/fbb/xfbb.sh -d & # starts fbb

We haven’t talked yet about some of these commands. Don’t worry; we will.

Other Linux AX.25 Capabilities

In addition to TCP/IP, the Linux AX.25 toolkit includes several other goodies. Because
our focus is on TCP, I won’t provide much detail on them, but currently available features
include the ability to map incoming AX.25 connections to specific programs using a
daemon called ax25d. Several programs take advantage of this inbound-connection
capability: pms is a personal message system that allows users to login via AX.25 and
leave messages for system users; axspawn can can automatically create user accounts
for AX.25 users when they connect to the system; the LinuxNode program (called node

for short and described later) provides a NET/ROM-like user interface that allows a
Linux system to act as an AX.25 and NET/ROM switch; and axconv (described in more
detail later) allows users to be dropped into a convers program. These programs are
probably just a sample of what we’re going to see, as the ax25d daemon allows you to
let users execute any program that runs under Linux when they connect to your station.

189

Using Linux Native AX.25

Configuring ax25d

The ax25d program is a central part of the Linux AX.25 suite, and it’s worth a few
minutes of our time. ax25d is a daemon program (one that runs in the background on
the system, waiting for input) that monitors all the AX.25 interfaces for incoming
connections. When a connection arrives, ax25d determines, based on the origin call,
destination call, and the interface, what to do with it. For example, you can configure
ax25d to route any connection arriving on the NET/ROM interface to the node program,
or any connection arriving on the 2m port addressed to callsign W8APR-2 to the DX
Cluster software. You can also direct connections based on source callsign; there are
lots of possibilities here, not the least of which is locking out troublesome neighbors.

The ax25d program gets its configuration from the file /etc/ax25/ax25d.conf (not much
of a surprise, really). Here’s a sample (and simple) ax25d.conf file:

/etc/ax25/ax25d.conf
#
ax25d Configuration File.
#
AX.25 Ports begin with a ‘[‘.
NET/ROM Ports begin with a ‘<’.
#
[BBROOK VIA vhf]
NOCALL * * * * * * L
default * * * * * * - root /usr/sbin/node node
#
[W8APR-1 VIA vhf]
NOCALL * * * * * * L
default * * * * * * - root /usr/sbin/node node
#
[BBROOK VIA pi0a]
NOCALL * * * * * * L
default * * * * * * - root /usr/sbin/node node
#
[W8APR-1 VIA pi0a]
NOCALL * * * * * * L
default * * * * * * - root /usr/sbin/node node
#
<netnod>
NOCALL * * * * * * L

default * * * * * * - root /usr/sbin/node node

190 Chapter 17

PART 4 – The Fancy Stuff

Note the structure of this file. First, at least some versions of ax25d complain if there
are blank lines in the file, so it’s best to make sure each line is either a command, or
begins with a “#” character. Each destination call/interface pair has its own section,
which continues until the next pair begins. Call and interface are delimited with “[“
and “]” characters. The NET/ROM interfaces use “<” and “>” as delimiters, and only
the interface, and not an associated call, is used.

Within each call/interface section, a separate line identifies what to do for each source
call. The two lines in each section are the standard ones – the first locks out any station
with a call of “NOCALL” while the second is a default that sends the connection off to
the node software unless there’s another match (this should always be the last line of
the section). If you want to treat incoming stations differently based on their call, you
can add additional lines for each specially-handled call.

The asterisks are option fields that aren’t used in this example; see the ax25d.conf man
page for details on what they represent. The FBB software, if present, does not use
ax25d; it listens for a callsign defined in its own configuration file. Don’t use the FBB
callsign for any purpose other than FBB!

Configuring LinuxNode

The node program provides a NET/ROM node user interface much like the familiar
G8BPQ software. In our example, node is fired up for any user-level (as opposed to
network) connection via the netnod NET/ROM interface, and for any connection
addressed to either W8APR-1 or BBROOK on any interface. The behavior and
appearance of node is controlled by three files: /etc/ax25/node.conf, /etc/ax25/node.info,
and /etc/ax25/node.perms.

191

Using Linux Native AX.25

node.conf is the primary configuration file; here is a simple version:

/etc/ax25/node.conf - LinuxNode configuration file
#
see node.conf(5)

Idle timeout (seconds).
IdleTimeout 900

Timeout when gatewaying (seconds).
ConnTimeout 3600

Visible hostname. Will be shown at telnet login.
HostName mvfma.ampr.org

ReConnect flag.
ReConnect on

“Local” network.
LocalNet 44.71.36.0/24

Command aliases. See node.conf(5) for the meaning
of the uppercase
letters in the name of the alias.
#Alias
CONVers “telnet %{2:mvfma} 3600 \”/n %u %{1:139}\””

Node ID.
NodeId BBROOK:W8APR-1

NET/ROM port name. This port is used for outgoing
NET/ROM connects.
NrPort netrom

Logging level
LogLevel 3

The escape character (CTRL-T)

EscapeChar 20

The ability to define aliases (such as the one above that connects to the convers server)
and to run external commands give the LinuxNode program great flexibility.

192 Chapter 17

PART 4 – The Fancy Stuff

The node.info file is the text that is displayed when someone issues the “i” command
from the node prompt. Here’s ours:

This is a multi-protocol switch that supports AX.25,
NET/ROM, and TCP/IP using the Linux operating system.
It provides access to the W8APR PBBS System. This
system is sponsored by the Miami Valley FM
Association and is located in Bellbrook, Ohio.

For more information, contact jra@febo.com or

N8UR@W8APR.#DAY.OH.USA.NOAM.

The node.perms file defines the privileges that node users have, based on their callsign:

/etc/ax25/node.perms - LinuxNode permissions file
#
user type port passwd perms

User n8ur can login without password from
anywhere else but ‘inet’.
#
n8ur inet * qwerty 95
n8ur * * * 95

WA8ZWJ is a bbs so it needs escape disabled.
#
wa8zwj * * * 287

Default permissions per connection type.
#
* ax25 * * 31
* NET/ROM * * 31
* local * * 31
* ampr * * 31
* inet * * 0

* host * * 31

193

Using Linux Native AX.25

The connection type (second field may be one of the following:

* Wildcard; matches any type of connection.

ax25 Matches users coming in with AX.25.

NET/ROM Matches users coming in with NET/ROM.

rose Matches users coming in with ROSE.

local Matches TCP/IP connections where

user’s host is in “local” network as

defined in node.conf.

ampr Matches TCP/IP connections where

user’s host is in amprnet (44.0.0.0/8).

inet Matches TCP/IP connections where

user’s host is neither in “local” net_work

nor in amprnet.

host Matches users starting LinuxNode from shell.

194 Chapter 17

PART 4 – The Fancy Stuff

The permissions field works the same way as the NOS ftpusers file; the number is
generated by adding together the values for the various permissions granted to that
user. Here are the values you can use:

1 Permits logging in even if no other

permissions are given.

2 Permits outgoing AX.25 connects.

4 Permits outgoing NET/ROM connects.

8 Permits telnetting to hosts in the

“local” network as defined in node.conf(5).

16 Permits telnetting to hosts in amprnet.

32 Permits telnetting to hosts neither in

the “local” network nor in amprnet.

64 Permits using hidden ports in outgoing

AX.25 connections. (See Hidden_Ports

command in node.conf(5).)

128 Permits outgoing ROSE connects.

25656 The no-escape flag. Disables the escape mechanism

for this user.

Unfortunately, these values don’t match the ones NOS uses in ftpusers.

195

Chapter

18
Internet Gateways

Part 4: The Fancy Stuff

Introduction – and Warning!

Gateways aren’t technically too complicated, but there are significant security and
legal considerations that affect every gateway, and coordination among gateway stations
is probably more important than in any other part of packet radio. Before tackling a
gateway, you should have a solid working knowledge of the software you’re using, the
security and legal issues involved, and the need for coordination with other gateway
operators.

Why Can t We Directly Connect to the Net?

NOS is tuned for amateur radio applications, but because TCP/IP is the universal
language of the Internet, there’s no technical reason why a NOS system can’t route
packets between ham radio networks and the Internet. And, of course, a Linux/AX.25
system is designed with the Internet in mind. There are some good reasons, though,
why we don’t want to set up an amateur IP system to blindly route between the local
ham network and the Internet.

Technically, such a gateway would cause problems because each IP network, including
the 44.0.0.0 amateur network, should have only a single point of connection to the
Internet. Remember that our ham network isn’t fully connected; we are lots of isolated

196 Chapter 18

PART 4 – The Fancy Stuff

subnets who can’t talk directly to each other – if we could, we wouldn’t need gateways!
Multiple connection points linking pieces of the ham network directly to the Internet
both violates Internet standards and would require complex routing tables among the
commercial gateways on the Internet’s backbone. In today’s environment, that’s not
practical.

Legally, mixing the amprnet and the Internet causes several problems. First, when
data originated by a non-ham (such as an Internet web server) is transmitted over the
air, it’s considered third-party traffic, and most countries have stringent rules that limit
when, and how, hams can transmit third-party messages. Second, it would be very
difficult to ensure that traffic being sent from the Internet over a radio network would
comply with the restrictions on commercial traffic, obscenity, etc., imposed by our ham
licenses. Finally, there’s a reverse security issue – Internet traffic that’s sent by ham
radio is percieved by the Internet folks as insecure, and sensitive data such as passwords
might be grabbed by the Bad Guys. The organizations who we might ask to give us
connectivity — typically a university computer science department or a corporate IS
organization — are concerned about what a wide-open connection to a bunch of hams
might do to their security.

How Gateways Work

Despite all the problems I’ve outlined, we do have things called Internet gateways, so
there must be some way to solve the security and legality issues. What’s the secret?

There are two one-word answers: encapsulation and addressing. If you recall those
long, boring chapters at the beginning of the book, the whole TCP/IP protocol stack is
built on the concept of encapsulating one protocol within another. TCP is encapsulated
within IP, which is encapsulated within AX.25. Encapsulation isn’t a one way street.
It’s possible to encapsulate lower level protocol frames inside higher level ones, or even
a frame of one protocol type within another of the same type.

197

Internet Gateways

An amateur-radio-to-Internet gateway is an IP host that has (at least) two interfaces,
one that connects to the Internet, and another that connects to the amprnet. Each of
these interfaces has its own IP address, and that address is local to the network the
interface connects to. The radio interface will have an IP address in the 44.0.0.0 network,
while the interface that connects to the Internet has an non-ham IP address that is routable
over the Internet.

The gateway encapsulates packets from the radio interface within IP frames that are
sent out via the Internet interface. In other words, we “wrap up” our amateur radio
data inside innocent-looking IP frames that are sent out over the Internet with “real” IP
addresses. The left part of Figure 18-1 shows what happens.

DATA

TCP
IP

AX.25

IP

TCP
IP

AX.25

TCP
IP

AX.25

TCP

TCP
IP

DATA

TCP

TCP
IP

System A
System B

Ham Radio
Ham Radio

Internet

Figure 18-1 - example of encapsulation

198 Chapter 18

PART 4 – The Fancy Stuff

Now that we’ve hidden our data inside an IP frame that can travel across the Internet,
where do we send it? To another gateway system, of course. More specifically, we send
it to the Internet address of another gateway system. That station unwraps the frame,
extracts the original packet, and ships it off to the ham network. The right part of
Figure 18-1 shows the recipient’s role in the process.

The critical difference between an ordinary IP router and a packet-internet gateway is
that amprnet packets are not just passed on to the next host in line, but are hidden
inside packets that have nothing to do with the 44.0.0.0 network. The ham packets are
treated as data within standard Internet packets. This use of encapsulation and non-
ham IP addresses has two important consequences.

First, no network 44 data flows over the internet — you can snoop the backbone for as
long as you like, but you’ll never see a 44.x.x.x address show up as either the sender or
recipient of a packet.18-1 Second, access to and from the ham network is controlled: the
gateway station, as part of its wrapping and unwrapping process, can protect both sides
of the system from unauthorized access.

An AX.25 Internet gateway system has a route to each of the other gateways it wants
to reach, and each of those other gateways must have a route pointing back to it. These
routes use only non-ham IP addresses, and they must be manually configured. As a
result, there’s a fair amount of coordination involved in running a gateway; you can’t
just put one together and sit back. Later in this chapter I outline some of the resources
that you can use to help you coordinate your gateway with the rest of the amprnet
world.

Gateway Platforms

If you’d like to run an Internet-to-packet gateway, there are three different routes you
can take: JNOS or TNOS under DOS, JNOS or TNOS under Linux, or Linux native
AX.25. Frankly, I’d recommend against running a gateway under DOS, unless you’re

18-1 Actually, there is a route that connects the 44.0.0.0 amprnet to the Internet at large, but it only talks to
gateway stations, and doesn't provide a complete interface between the two.

199

Internet Gateways

running one of the recent NOS versions that use “DOS extender” technology to use
memory above 640k. The memory limitations we talked about earlier make it very
difficult to configure a “traditional” NOS gateway system that will be stable and reliable.

As between NOS/Linux, and native Linux, the choice is more difficult. If you are
running TNOS as a PBBS and want to allow some users from the Internet to have some
access to your network, TNOS can handle both the gateway and PBBS functions in one
system. It also offers sophisticated security features that let you define exactly what
users can and cannot do with the system, depending on whether they are accessing it
from the Internet or from the radio world, and depending on what user or domain
name they have. JNOS/Linux doesn’t have quite as many security knobs to tune, but
will also do a good job.

On the other hand, if you only want to provide gateway capabilities and have another
system provide user services, the native Linux system offers a “cleaner” approach.

A significant number of people are using each of the NOS/Linux and native Linux
approaches. Your decision on which to use should be based on what you want your
gateway to do, and on which environment is more comfortable to you.

Gateway Types: AX.25 and IP

It’s possible to encapsulate any protocol within any protocol. NOS supports two forms
of encapsulation: AX.25 within IP, and IP within IP. AX.25 (or AX/IP) encapsulation
means that any sort of ham traffic that is based on AX.25, including NET/ROM, can be
sent via the gateway. An AX/IP gateway looks to end users like a digipeater, a NET/
ROM node, or both. The remote gateway appears to be another digipeater, or a remote
NET/ROM node. The existence of the gateway is transparent to users — it acts like any
other link between a pair of digis or nodes, though it may be a few thousand miles
longer!

200 Chapter 18

PART 4 – The Fancy Stuff

IP within IP (or IP/IP) encapsulation limits gateway use to TCP/IP users. An IP/IP
gateway acts just like a normal IP switch; ham IP users set their default route to use the
gateway, and they can reach any other amprnet subnet that has a gateway-to-gateway
(or “encap”) route available.

Most gateways support AX/IP encapsulation, though some of these don’t support
NET/ROM. A few support only IP/IP, on the theory that we should be encouraging IP
use and not the use of sub-optimal protocols. You’ll have to make your own decision.
Of course, the gateways at each end of a link must both support the same encapsulation
types or things won’t work.

There’s one important consideration before you begin. Setting up the software to
support a gateway is straightforward. But the gateway isn’t of any use unless there’s
another gateway for you to talk with. Ham Internet gateway operation is a community
activity, and to make it worthwhile, you need to be tied into that community. There are
two important sources of information that you need to consult before you plunge in.
First, there is an email mailing list for gateway operators, run by Tony Querubin AH6BW.
Drop Tony email at gateways-l-request@lava.net asking to subscribe (be patient; it may
take a couple of weeks to be added to the list).

The other resource is the web site http://www.fuller.net/Gateways, which is run by
James Fuller, N7VMR. James’ site contains two documents written by Warren Toomey,
VK1WXT, that are required reading for any gateway operator: Setting Up a Packet-
Internet Gateway, and The Amateur Packet Radio Gateway FAQ. James also runs an
automated system for adding information to the “encap.txt” file, which is the official
source of routing information for gateway community and is updated daily. You need
to register your site so that others know how to route to you, and obtain the encap.txt
file yourself so that you know how to route to them. Information on how to do this is
available at fuller.net.

201

Internet Gateways

Configuration Basics

No matter what system you use, or whether you are using AX/IP or IP/IP
encapsulation, the basic gateway configuration steps are the same. We’ll talk about
NOS gateway configuration first, followed by Linux/AX.25.

NOS IP/IP Configuration

You should first concentrate on getting IP-over-IP gatewaying working. Using
TNOS/DOS18-2 as an example, the AUTOEXEC.NOS file needs, in addition to the other
configuration information we’ve talked about earlier in this book, a set of commands
that define the encapsulated routes. For this example, assume that the radio interface is
called “vhf”, has an IP address of 44.71.36.1, and serves the [44.71.36.0]/24 network.
The Internet route is via an Ethernet interface called “eth0”, which has an IP address of
192.168.1.1, and is on the 192.168.1.0 network.

The first thing to do is tell TNOS that it will need to encapsulate data. Encapsulation
works through a logical interface (similar to the logical NET/ROM interface). The
commands

ifconfig encap ipaddress 44.71.36.1

ifconfig encap mtu 576

tell TNOS that it will be encapsulating data addressed to 44.71.36.1 (the IP address of
the gateway), and establishes an MTU of 576 for encapsulated packets (choose an
appropriate MTU based on the size of the encapsulated frames you will be sending).

The next step is to establish routes for the encapsulated data. These should be the first
routing statements you put in AUTOEXEC.NOS; the default route and other non-encap
routes should follow them. An IP/IP gateway route looks like this:

Example route only – don’t use this in

the real world!

route add [44.64.0.0]/16 encap 192.168.2.1

18-2 I’m using DOS NOS for this example because its direct support of Ethernet cards simplifies things. In a
TNOS/Unix system, you’d need to use a pty slip link, as an extra step in reaching the Internet.

202 Chapter 18

PART 4 – The Fancy Stuff

Specifying “encap” as the interface is the magical part of the command. This route
says that packets for the class B-sized subnet 44.64.0.0 can be sent to Internet host
192.168.2.1, which has RF connectivity to all the amprnet networks in that address space.
Of course, instead of a single encap route in your file, you’ll probably have many, because
a manual route must be entered at both ends of each gateway-to-gateway link.
Maintaining the routing table can quickly become painful. Using the encap.txt file from
fuller.net will make the task much easier. To do this, instead of putting encap routes
directly in AUTOEXEC.NOS, read them in from a separate file using the source

command:
Source the routing file externally

source encap.txt

If you’ve provided your gateway information to fuller.net for inclusion in encap.txt,
you could create serious routing loops by setting up an encap route to yourself. To
avoid this, either edit your own info out of encap.txt before using it, or load it before
any of the other routes – that way your local routes will overwrite the ones in the encap
file.

You should also adjust the ip ttl value in AUTOEXEC.NOS to 32 or even higher, as
Internet packets can go through lots of routers on their way from gateway to gateway.

Security Basics

Those few commands are all that’s necessary to make a gateway work in IP/IP mode.
However, a setup like this will result in a gateway that has serious security holes. There
are two forms of access control supported by JNOS and TNOS, and similar control is
available within the Linux networking code.

The first security measure is called IP access control. You can configure your gateway
to forward packets only to and from certain ranges of IP addresses. For example, the
commands

203

Internet Gateways

format is: ip access [permit|deny|delete] [proto]

address range iface

allow all amprnet addresses in

ip access permit any 44/8 vhf

block everything else

ip access deny any all vhf

will allow packets to and from amprnet addresses to be forwarded over the “vhf”
radio interface, but packets from other address ranges will be blocked. IP access control
is the minimum security you need to run a safe gateway, and it may be all you need if
you don’t offer other services like smtp mail handling, or mailbox login, on your gateway
machine.

If your gateway does offer additional services that are based on the TCP protocol, you
can use TCP access control to provide security for them. TCP access control allows you
to specify addresses that can access a specific TCP service port. For example, the convers
server usually uses TCP port 3600. The following commands will limit access to the
server so that only amprnet hosts and machines on the local ethernet will be able to use
it:

allow all amprnet addresses to reach the convers

server

tcp access permit 44/8 1 3600

allow the local network

tcp access permit 192.168.1.0/24 1 3600

block everyone else

tcp access deny all 3600

204 Chapter 18

PART 4 – The Fancy Stuff

You should consider adding access controls for all the services your gateway system
offers. This, by the way, is a good argument for configuring the gateway to provide
only minimal services – if the gateway machine does nothing more than pass IP traffic,
and another system on the amprnet side of the gateway provides other services, you
will close many possible security holes.

By the way, TNOS offers its own set of security options that allow more fine-grained
tuning of permissions. If you are running a TNOS gateway, it will be worth your time
to study the “security” commands and use them to maximize your system’s security.

NOS AX/IP Configuration

Once you have the IP/IP gateway functions working correctly, you can (if you wish)
add an AX/IP gateway to encapsulate AX.25 packets within IP. The AX/IP gatewat
usually interfaces to the RF AX.25 network as if it were a digipeater; to use the gateway,
stations include the local gateway call in their connect string. In NOS, you enable AX/
IP by attaching a logical interface defining the local call and remote IP address of the
route. Since each AX/IP route requires a unique call/SSID at each end, the practical
number of routes you can use is limited.

Once the interface is in place, any packet sent to the local gateway call will be
encapsulated and sent to the gateway specified by the remote IP address, which will
unencapsulate it and send the packet out over the air to its destination.

As an example, let’s say I want to establish an AX/IP route from W8APR to AA9A’s
gateway. The first step is to get IP/IP encapsulation between our systems working as
described above. Next, Tom and I each need to create an AX/IP logical interface and
associate it with a unique call/SSID pair:

attach axip command is:
attach axip <iface> <mtu> <remote IP> <local call>
attach axip ip0 256 192.168.2.1 W8APR-11
ifconfig ip0 desc “AX/IP to Appleton, WI”
ifconfig ip0 ipaddress 44.71.36.1

ifconfig ip0 broadcast 255.255.255.255

205

Internet Gateways

This command creates an ip0 interface that’s associated with the Tom’s Internet IP
address 192.168.2.1, and a unique call/SSID combination at my end.18-3 The ifconfig

desc statement helps identify the link, and the other ifconfig statements set default
parameters for safety sake – the actual IP address used isn’t critical and can be one of
the other ones assigned to the system. Tom’s configuration would be similar, but would
point to my gateway IP address and his call. The call used at Tom’s end isn’t part of my
config file, but it needs to be known to my local users who want to use the link.

Finally, we need to ensure that digipeating is enabled both for the AX/IP interface,
and for whatever RF interfaces will be used to access the gateway:

ax digi ip0 on

ax digi vhf on

ax digi uhf on

With these commands in place, a user on my network could issue a connect string like
this to connect to WA9SXN, who is on Tom’s radio LAN:

C WA9SXN via W8APR-11 AA9A-6

The AX/IP link creates a wormhole, or tunnel, over the Internet that gives users at
each end the illusion they have a simple two digi path between their stations.

NOS NET/ROM Gateway Configuration

Configuring NET/ROM over IP is simple once you have the IP/IP and AX/IP links
working. You use the netrom interface command to associate the NET/ROM system
to the AX/IP port:

netrom interface ip0 230 100

230 is the default route quality, and 100 the minimum quality, to be used on this
interface.

18-3 It’s common to associate an alias-like call (perhaps “DAYGAT” in this case), rather than a call/SSID like
N8UR-6, to the AX/IP port – whether you want to do that is a matter of personal taste.

206 Chapter 18

PART 4 – The Fancy Stuff

Although it’s easy to configure a NET/ROM over IP gateway, make sure there’s a
good reason to do so. Using straight AX/IP encapsulation is more efficient – you don’t
have as many bytes of overhead – and NET/ROM gateways can rapidly pollute the
local NET/ROM network by introducing hundreds of additional nodes that may confuse
more than help your users. You’ll recall that I stressed in the NET/ROM discussion
above how important it was for all the nodes on a NET/ROM network to have compatible
parameter settings – well, that’s just about an impossible task to accomplish when
gateway nodes are added to the mix. As they say, “You Have Been Warned.”

Linux IP/IP Configuration

Linux supports IP/IP encapsulation using a “tunnel” driver that’s available as a kernel
option (and that is unrelated to the AX.25 code). It also supports AX/IP encapsulation
using the ax25ipd program. One difference from NOS is that the ax25ipd is a standalone
program – you can enable AX/IP encapsulation without setting up a separate IP/IP
configuration.

To configure IP/IP encapsulation, first make sure that you’ve compiled the IP tunnel
driver into your kernel. In the make config menus, you need to select TCP/IP

Networking, then IP: Forwarding/Gatewaying, and finally IP: tunneling. The kernel
is then ready to use tunnel devices with names like tunl0 and tunl1.

To use a tunnel device, configure it with the ifconfig command like any other interface,
and then add one or more routes for the tunnel routes you want:

/sbin/ifconfig tunl0 192.168.1.1 mtu 512 up

/sbin/route add -net 44.128.1.0 \

netmask 255.255.255.0 tunl0 gw 192.168.10.1

/sbin/route add -net 44.128.2.0 \

netmask 255.255.255.0 tunl0 gw 192.168.11.1

/sbin/route add -net 44.128.3.0 \

netmask 255.255.255.0 tunl0 gw 192.168.12.1

207

Internet Gateways

As in NOS, the IP address assigned to the tunnel driver should be the same one used
for the primary AX.25 interface on the machine.

Linux offers a set of security options similar to the ip allow/deny and tcp allow/deny

commands in NOS. Check host.allow and host.deny man pages for configuration
details.

As with NOS, to make your gateway useful you will need to provide encapsulated
routes to other gateways. The encap.txt file from http://www.fuller.net can’t be used
as-is, because it is formatted for the NOS configuration file structure, but Ron Atkinson,
N8FOW wrote a script that will convert it to the proper format for Linux. It’s available
from the TAPR site as munge_encap.sh.

It takes encap.txt as its standard input, and generates Linux route commands on its
standard output:

./munge-encap.sh < encap.txt > encap.linux

Before using it, you will need to edit a couple of lines in munge_encap.sh to identify
your local network. The output file (encap.linux in the example) can be run as a shell
script to establish the encap routes.

Linux AX/IP Configuration

AX/IP encapsulation in Linux is independent of the tunnel driver, so if you want you
can have AX/IP links without creating underlying IP/IP links. Linux AX/IP instead
uses a standalone program, ax25ipd, to handle the encapsulation chores. It’s configured
by the /etc/ax25/ax25ipd.conf file. I have to admit that getting AX/IP encapsulation
working on my system was one of the tougher challenges I’ve had, although the resulting
configuration file is actually very simple. Making it work isn’t too hard, but
understanding why it works from the limited documentation and the configuration file
proved more difficult for me.

208 Chapter 18

PART 4 – The Fancy Stuff

Here’s what it cost me lots of hair to figure out: ax25ipd does nothing more than
create a logical interface that looks like a KISS TNC. It’s attached to one end of a pseudo-
tty pipe (you’ll remember we discussed that earlier as part of configuring TNOS/Linux).
The other end of the pty is the subject of a kissattach command, and the result is an
ax25 interface that looks just like any other – it is configured with the axports file and
can be used anywhere a real TNC interface could be.

The ax25ipd.conf file establishes the remote IP addresses and callsigns for each route.
Unlike NOS, ax25ipd only requires a single call/SSID combination for all the AX/IP
routes, rather than a separate one for each. It also requires you to know the call being
used at the other end of the gateway. The gateway looks like a digipeater, and users
connect through it just as with NOS:

Connect WA9SXN v W8APR-11, AA9A-6

Here’s the kissattach command, which is normally issued before the ax25ipd daemon
is started, as with the other non-IP interfaces:

set up the axip port – use the master end of
the pty pair

/usr/sbin/kissattach -i 44.71.36.1 /dev/ptyqf axip

Since the axip port is running before the daemon is started, it needs to use the master
side of the pty pair. The ax25ipd daemon is started later, and in its simplest form, the
/etc/ax25ipd.conf file looks like this:

ax25ipd.conf

socket ip
mode tnc
speed 9600

device /dev/ttyqf # slave end of the pair

loglevel 2

Just one of many possible routes,
each specified by the remote call
and remote IP address

route AA9A-6 192.168.2.1

209

Internet Gateways

You shouldn’t have to mess with the “socket” or “mode” parameters. Although the
option to set the mode to “digi” looks interesting, it's not as useful as you might think,
and the normal configuration is mode tnc. The speed setting is a placeholder since this
is a logical interface that doesn’t run at a defined baud rate. This example shows only a
single route command, but you could have many, each one binding a remote IP address
to a remote call. All the AX/IP routes use the same local call as the first digipeater in the
connect string. That call is configured in /etc/axports like any other port:

/etc/ax25/axports

The format of this file is:

name callsign speed paclen window description

axip W8APR-11 - 255 4 axip interface

If you want users to access the AX/IP gateway via digipeater syntax as in NOS, you
need to take one more step. Linux AX.25 doesn’t support digipeating by default. To
enable it, you must run the ax25digi program:

start the ax digi

/usr/sbin/axdigi &

The “&” sign following the command tells Linux to run this program in the
background; if you forget to include that character, the startup script will hang at that
point forever.18-4

axdigi requires no configuration – just start it and it runs, allowing cross-port
digipeating through your system. Unfortunately, there’s no way to limit the ports that
are allowed to digipeat – it will allow users to digi from any port to any other port – so
keep that in mind if you decide to use this tool. As of this writing axdigi is not included
in the standard ax25-utilities program set, but you can find it at the TAPR site.

18-4 If you accidentally get hung up by forgetting to include the "/" character after axdigi, you may be able to
recover by switching to another Linux virtual console, logging in as root, and them killing the offending program,
like so: killall axdigi.

210 Chapter 18

PART 4 – The Fancy Stuff

Linux NET/ROM Gateway Configuration

To use NET/ROM via AXIP encapsulation in Linux, first you need to make sure AXIP
is configured and working properly. Then, add the axip port to the existing /etc/
nrbroadcast file:

/etc/ax25/nrbroadcast
The format of this file is:
ax25_name min_obs def_qual worst_qual verbose

axip 5 250 100 1

Again, you need to use care in setting these parameters, particularly the “def_qual”
default quality value. The “verbose” flag is set to 1 because we want to propagate
nodes via this port. The final step is to enable broadcasts via ax25ipd by configuring
broadcast callsigns, and enabling broadcasts, on the routes that will carry NET/ROM
traffic. Here’s the ax25ipd file we looked at before, with some new lines added:

ax25ipd.conf

socket ip
mode tnc
speed 9600

device /dev/ttyqf # slave end of the pair

loglevel 2

Broadcast Address definition. Any of the
addresses listed will be forwarded to any of
the routes flagged as broadcast capable routes.
broadcast QST-0 NODES-0

Just two of many possible routes,
each specified by the remote call
and remote IP address
#
The “b” flag indicates that broadcasts may
be transmitted on the route; this is necessary
to enable NET/ROM on that route.

route AA9A-6 192.168.2.1
route WA9EQP 192.168.3.1 b # broadcast enabled

211

Chapter

19
The Converse Bridge

Part 4: The Fancy Stuff

You may have seen “QSO bridges” or “Chat Boxes” that allow more than two packet
users to carry on a round-table conversation. These are necessary because packet radio
is a point-to-point protocol — error checking only works between a pair of stations.
The QSO bridge solves this problem by retransmitting a packet sent by one member of
the QSO to every other member. That way everyone is guaranteed to get an error-free
packet (at the cost of the same data being transmitted multiple times).

Both JNOS and TNOS offer an advanced version of this capability called a convers19-1

server. There’s also a convers daemon for Linux. The convers server allows users to
split into separate groups ("channels") to carry on their own conversations, so you don’t
have to try to pick your messages out of multiple QSOs (conversations). It also has
other features that make it more similar to the Internet IRC (Internet Relay Chat) service
than to the simple QSO bridge.

The biggest advantage of the convers server over the QSO bridge is that multiple
servers can be linked together. In other words, the mvfma.ampr.org server in Dayton
can link with the n8xja.ampr.org server in Springfield via a UHF link, and the round-
table can include users at each end accessing the system on their local 2m channel.
That’s pretty cool, but now think about the Internet gateways we’ve been talking about.
Picture a world-wide round-table, with hundreds of hams joining in. It exists today
through Internet-linked convers servers.

19-1 No, I don’t know why they left the “e” off “Converse.”

212 Chapter 19

PART 4 – The Fancy Stuff

Configuring Convers: NOS

Configuring convers in NOS is straightforward. You give the server a name, tell it the
remote hosts with which it will link and what radio interfaces it should use, and start it
up:

Provide the name of this server, usually your city or
region name.
convers host Dayton

decide which of the system interfaces will allow
convers connects
convers interface vhf
convers interface uhf

You can assign a callsign to the server; users who
connect to it will be dropped directly into convers.
convers W8APR-5

link to other convers servers. The last parameter
is optional and is the name of the remote server. It
is displayed with the /Links command only when that
link is not up.
convers link 44.71.36.3 Springfield
convers link 44.71.14.5 Cincinnati

#start it up
start convers

Unlike gateway routes, each convers link does not have a reverse link at the other end
– the link is established from one end only, and it’s very important to make sure that
convers links do not point back at each other. If they do, the result will be nasty loops.
If you link to server A, who links to server B, neither one of them should link back to
you. The convers server has loop detection code built in, but it’s best to avoid the
problem by designing link commands to ensure that they are one-way only.

213

The Converse Bridge

Using Convers

There are three ways users can access the NOS convers server: First, if the convers

<mycall> is set, AX.25 connections to that call will go directly to the server. Second, a
user connecting to the PBBS by any means – AX.25, NET/ROM, or TCP/IP – can issue
the “C” command to go to the server. Finally, TCP/IP users can telnet to the convers
port (usually 3600) with a command like “telnet w8apr.ampr.org 3600”.

Once you’ve connected to the server, everything you type will be retransmitted to
every other user on the same convers channel. Channels allow convers bridges to
support many users who may be carrying on separate conversations. Users on a channel
see everything that other users on that channel type, but they don’t see transmissions
on other channels. When you first connect, you will be placed in channel 0, which
serves as the calling channel.

Commands to the convers server begin with a “/” character – lines beginning with
any other character are sent as data. To disconnect from the server, you can use either
the /bye or /exit command. If you’re logging in from another machine, you may need to
set your login to your callsign with the /name command. You can change channels
with the /channel n command, where n is the channel number. The /users and /who

commands list all the users on each channel of the server; in a system with several links,
there could be dozens of users. The /links command lists all connections to other hosts.
The /nick command lets you establish a nickname (like your first name) and the /note

or /pers command lets you set a personal ID string with information about yourself –
other users can see that if they use the /who or /whois commands. There are several
other commands, which vary somewhat depending on the convers software version.
The /msg and /write commands let you send a private message to another user, by
specifying the user call and then the message. The /? or /help commands will send you
a help screen.

214 Chapter 19

PART 4 – The Fancy Stuff

Convers for Linux

There are a couple of programs that will let a Linux/AX.25 system act as a convers
server. One is convers, which derived from the German WAMPES software, and the
other is Tampa PingPong, also known as tpp-convers, which Brian Lantz, KO4KS,
adapted from convers. I’ll describe how to configure tpp-convers version 1.14 with
patches installed (the patched version is available on the book disk, or from
www.tapr.org)19-2 .

First, make sure you’re logged in as root, and then make an appropriate directory in
which to unpack the sources; unlike the other packages described earlier, tpp-convers-
1.14.tgz doesn’t create its own directory. Next, unpack the archive file in that directory:

mkdir /usr/src/tpp-convers
cd /usr/src/tpp-convers

tar zxvf tpp-convers-1.14.tgz

You’ll end up with a bunch of README files, and I suggest you read them. The files
are a combination of README’s from the original convers package, as well as Brian’s
new ones. Once you’ve looked at the documentation files, and in particular the
“INSTALL” and “README.TPP” files, run the configuration program:

./Configure

Configure does a lot of checking to see what your system looks like, and it may take a
while – be patient! It will set things up to match your installation. If you’re using a
version other than the one from TAPR, the default file locations won’t be the same as
those used by the other AX.25 tools. In that case, I suggest you edit the Makefile after
running Configure to change the default file locations. Here’s how I would change the
tpp-convers Makefile:

19-2 As of this writing, tpp-convers has been at version 1.14 for a couple of years, although KO4KS has issued
three patch files that fix some bugs. It’s not clear if there will be another release of this, or a rumored successor
program called TACS. In the meantime, the TAPR version of TPP, in a file called tpp-convers-1.14-n8ur.tgz,
includes the three patch files, the change to file locations noted below, and several minor tweaks to make it
compile properly under a current Linux (Debian 1.2, to be precise) system.

215

The Converse Bridge

Default Suggested
DATA_DIR= /tcp /var/ax25/convers
CONF_DIR= /usr/local/etc /etc/ax25
BIN_DIR= /usr/local/sbin /usr/sbin
UBIN_DIR= /usr/local/bin /usr/bin
MAN_DIR= /usr/local/man /usr/man

You should manually create the /var/ax25/convers directory and a personals/

subdirectory in it. Then, build and install the files with this command:
make install

You will end up with the server daemon, conversd, a user program used to access the
server, convers, and a couple of useful utilities that I’ll describe later. The programs
will be installed in the directories defined in the Makefile.

Before running the conversd daemon, you need to edit its configuration file,
/etc/ax25/convers.conf. Here’s a sample, based on the one in the documentation:

tpp-convers config file
Server Dayton
Email jra@febo.com
Secretnum 12345
Mode internet
Sysinfo Dayton TPP 1.14 Server
Security restricted
Link Hydra 1 1 hydra.carleton.ca:3600

The “Server” line defines the name of your server; the “Email” line is the address of
the primary sysop; the “Secretnum” line is a password for administrator privileges (check
the readme files to learn more about this), and the “Mode” line defines either “amprnet”
or “internet” operating mode – if you’re connecting to other NOS or conversd based
servers, you’ll want to set this to “internet” to provide full functionality. The setting of
“Security” determines whether users need to be on an authorized list to connect to the
server. Finally, the Sysinfo field is an additional description of your system for the
benefit of other users.

216 Chapter 19

PART 4 – The Fancy Stuff

Each “Link” line establishes a connection to one server. The first field is the short
name of the server. The second and third fields are group value and quality respectively,
and for most uses should both be set to “1”. The last field is the hostname and port
number to use for the connection; 3600 is the standard convers port. As with NOS
convers, you should make sure that your links are established in only one direction.
Unlike NOS, tpp-convers allows you to specify more than one link. You can create a
"chain" of links, and if the first link fails, the server will try the next in line, and so on.
This can greatly improve the reliability of convers service, as the heavily used servers
have a tendency to fall asleep once in a while.

Here is an example of how to configure a server chain:
Link server1 1 1 server1.somewhere.net:3600

Link server2 1 1 server1.elsewhere.net:3600 server1

Link server3 1 1 server1.nowhere.net:3600 server2

When conversd starts, it will first attempt to connect to server1, and if that fails, or if
server1 later stops responding, it will try to connect to server2. If server2 fails, conversd
will try to connect to server3.

Once you’ve configured convers.conf, you can start the program with the simple
command conversd – it will automatically go into the background. You should add it
to the configuration file (like /etc/rc.d/rc.local) that contains your other AX.25 startup
commands.

If you’d like to make the convers server available from the LinuxNode prompt, include
a line like this in node.conf to create a CONV command:

Alias CONVers “telnet %{2:localhost} \

3600 \”/n %u\””

Now, node users will see a CONVers option from the menu, and entering it will connect
them to the server.

217

The Converse Bridge

You may also want to convers access via a specific call or alias (like the “convers
mycall” command in NOS). Unfortunately, you can’t just run the tpp-convers program
from the ax25d.conf file; differences in end-of-line handling19-3 will cause problems.
Tomi Manninen, OH2BNS, wrote a convers client program that addresses this problem,
and makes a couple of additional modifications to improve performance over the air.
His axconv is available from tapr.org. It’s easy to compile. Put the axconv.c.gz file in a
convenient directory and issue the following commands as root:

gunzip axconv.c.gz

gcc -Wall -O6 -o axconv axconv.c

cp axconv /usr/sbin/axconv

This will compile the program and copy it to the /usr/sbin directory along with the
other ax25 utility programs. The command to start axconv looks like this:

axconv [-c <channel>] [-n <name>] \

[-p <paclen>] [-t <timeout>]<host>

The –c switch lets you define a starting channel; the –n switch sets the login name; the
–p switch sets the maximum packet length used; and the –t switch sets an inactivity
timeout (a setting of zero disables the timeout). The <host> is the convers server. You
may also follow the host with the port number; 3600 is the default so you won’t normally
need to do that.

Adding appropriate lines in ax25d.conf will let you start axconv automatically:
#

[MVCONV VIA *]

NOCALL * * * * * * L

default * * * * * * - root \

/usr/sbin/axconv axconv \

-p 256 -c 3694 -n %u localhost

19-3 The fact that Unix uses just the linefeed character at the end of a line while MS-DOS systems use both the
carriage return and linefeed characters causes lots of annoyance.

218 Chapter 19

PART 4 – The Fancy Stuff

These lines establish a call – DAYCON – that will start the axconv program when
anyone connects to that callsign on any AX.25 port. ax25d will launch axconv and have
it connect to the convers server on the local machine, using a default convers channel of
3694. The “-n%u” parameter means the user will be logged in with their call (the “%u”
is a variable that ax25d fills with the connecting station’s callsign).

The tpp-convers package also includes a couple of other useful programs. cstat can
be typed from the command line to show the status of the server’s links to other sites,
while online shows all connected users. Finally, the convers program is a client that
allows you to connect locally to the server.

When you connect locally using the tpp convers program, your Linux login name
will be used as your identifier to the convers network. If your login name isn’t your
call, you may be viewed as a non-ham intruder, so I suggest that you set up a user
account named after your call and use that when you want to join the convers roundtable
this way. If you connect to the server via telnet, you can avoid this problem by setting
your login with the /name command (the commands you type are in bold):

mvfma $ telnet mvfma 3600

Trying 192.168.1.1...

Connected to w8apr.febo.com.

Escape character is ‘^]’.

/NAME N8UR

conversd @ Dayton Tampa PingPong-Release 1.14 - Type /HELP for help.

*** There is 1 user online

*** You created a new channel 0.

*** Welcome back, n8ur!

*** (10:56) conversd made you a channel operator for channel 0

219

Chapter

20
Conclusion

Part 4: The Fancy Stuff

This has been a whirlwind tour of TCP/IP, but I hope you’ve found it helpful, and
even more, I hope it has encouraged you to explore the new capabilities that either NOS
or Linux/AX.25 offer. To learn the subtleties of NOS, you should do two things: read
the reference manual for the version you’re using, and play with the programs. Learning
Linux is similar: get a good book on Linux basics, read the documentation for the AX.25
features and utilities, and experiment. Once you know the ins and outs, please share
your knowledge with others. The ham radio TCP/IP community is still small, and we
need all the Elmers we can get!

220

221

Resources for NOS and TCP/IP

Appendix A - Resources for NOS and TCP/IP

222 Appendix B

Appendix B - AMPRNet Coordinators
AMPRNet IP address coordinators as of 10 October 1998

Corrections and updates to brian@ucsd.edu.

Note: the people listed here have volunteered to issue IP addresses for their areas. They are not paid
to do this service; please understand that they are perfectly at ease to deal with coordination responses
at a lower priority than the things that matter more, such as job and family. Please be patient when
requesting an address.

Note subnet widths.
44.002/18 USA:Calif: Sacramento K6RTV Bob Meyer
44.004/18 USA:Calif: Si Valley - SFO N6OYU Douglas Thom
44.006/18 USA:Calif: Sta Barb/Ventura WB5EKU Don Jacob
44.008/18 USA:Calif: San Diego WB6CYT Brian Kantor
44.010/18 USA:Calif: Orange County AA6TN Terry Neal
44.012/18 USA:Eastern Washington,Idaho KD7RO Steven King
44.014/18 USA:Hawaii & Pacific Islands WH6BH Derek Young
44.016/18 USA:Calif: Los Angeles/Valley WA6FWI Jeff Angus
44.017/18 USA:Calif: Antelope/Kern County KK6JQ Dana Myers
44.018/18 USA:Calif: San Brdo & Riverside KE6QH Geoffrey Joy
44.020/18 USA:Colorado: Northeast K0YUM Fred Schneider
44.022/18 USA:Alaska KL7JL John Stannard
44.024/18 USA:Washington:Western/Puget KD7NM Bob Donnell
44.026/18 USA:Oregon WA7TAS Ron Henderson
44.028/18 USA:Texas: North KC5ENU Eric Martin
44.030/18 USA:New Mexico AA5DF Tim Baggett
44.032/18 USA:Colorado: Southeast N3EUA Bdale Garbee
44.034/18 USA:Tennesee K9JA Jeff Austen
44.036/18 USA:Georgia N3AIA Doug Reed
44.038/18 USA:South Carolina KD4HTU Dave Gosselin
44.040/18 USA:Utah KA7OEI Clint Turner
44.042/18 USA:Mississippi KB5GGO John Martin
44.044/18 USA:Massachusetts:western KA1XN Bob Wilson
44.046/18 USA:Missouri N0EIR Dave Salaman
44.048/18 USA:Indiana K9DC Dave Gingrich
44.050/18 USA:Iowa KC0OX Ron Breitwisch
44.052/18 USA:New Hampshire K8LT Gary Grebus
44.054/18 USA:Vermont KD1R Ralph Stetson
44.056/18 USA:Eastern&Central Mass N1MGO Gordon LaPoint
44.056.12/24 USA:Massachusetts: Worcester N1MPY Wayne McMahon
44.058/18 USA:West Virginia KB8EHT Tim Connolly
44.060/18 USA:Maryland WB3FFV Howard Leadmon
44.062.0/24 USA:Virginia-Central K4ZIV Russ Garber
44.062.32/24 USA:Virginia-Charlottsville AC4ZQ Mike Duvall

223

IP Address Coordinators

44.062.64/24 USA:Virginia-Eastern WA4YSE Lyman Byrd
44.062.128/24 USA:Virginia-Western K4ZIV Russ Garber
44.062.192/24 USA:Virginia-Northern K4ZIV Russ Garber
44.064/18 USA:New Jersey: northern K2BJG Robert Anderson
44.065/18 USA:New Jersey: southern K2UT Bob Applegate
44.066/18 USA:Delaware NF3F Butch Rollins
44.068.1/20 USA:New York: NY & LI N2MDQ Steve Dworkin
44.068.48/25 USA:New York: 30 Rock only WA2NDV Frank Garofalo
44.068.52/20 USA:New York: NY & LI N2MDQ Steve Dworkin
44.068.64/20 USA:New York: ENY N2IGU Bob Bellini
44.069/18 USA:New York: WNY N2RJT Dave Brown
44.070/18 USA:Ohio - oldnet N8UR John Ackermann
44.071/18 USA:Ohio - newnet N8UR John Ackermann
44.072/16 USA:Illinois WA9AEK Ken Stritzel
44.073/16 USA:Illinois WA9AEK Ken Stritzel
44.074/18 USA:North Carolina (east) WA3JPY Mark Bitterlich
44.075/18 USA:North Carolina (west) WB4WOR Charles Layno
44.076/18 USA:Texas: south none
44.077/18 USA:Texas: west KA5EJX Rod Huckabay
44.078/18 USA:Oklahoma KB0QJ J. Frank Fields
44.080/18 USA:Pennsylvania: eastern WA3DSP Doug Crompton
44.082/18 USA:Montana WB7ETT Don Heide
44.084/18 USA:Colorado: Western K9MWM Bob Ludtke
44.086/18 USA:Wyoming WB7CJO Reid Fletcher
44.088/18 USA:Connecticut N1URO Brian Rogers
44.090/18 USA:Nebraska NF0N Mike Nickolaus
44.092/18 USA:Wisconsin, up pen Michigan N9UDL Thomas Landmann
44.094/18 USA:Minnesota N0QBJ Bob Brose
44.096/18 USA:District of Columbia N4YDP Richard Cramer
44.098/18 USA:Florida KO4KS Brian A. Lantz
44.100/18 USA:Alabama KE4NJB Bruce Tenison
44.102/18 USA:Michigan (west lower pen) N8WKM Dan Thompson
44.102/18 USA:Michigan (east lower pen) WB8TKL Jay Nugent
44.104/18 USA:Rhode Island W1CG Charles Greene
44.106/18 USA:Kentucky WA8FJK Gregory A Cross
44.108/18 USA:Louisiana N5KNX James Dugal
44.110/18 USA:Arkansas WD5B Richard Duncan
44.112/18 USA:Pennsylvania: western N3CVL Bob Hoffman
44.114/18 USA:N&S Dakota N7GXP Steven Elwood
44.116/18 USA:Oregon:NW&PDX,Vancouver,WA WS7S Tom Kloos
44.118/18 USA:Maine N1DXM Carl Ingerson
44.120/18 USA:special use in Nevada KI3V Richard Hallman
44.122/18 USA:Kansas K0HYD Dale Puckett
44.123/18 USA:Virgin Islands NP2W Bernie McDonnell
44.124/18 USA:Arizona KF7TP Keith Justice
44.125.0/18 USA:Southern Nevada KF7TI Earl Petersen

224 Appendix B

44.125.128/18 USA:Northern Nevada N8KHN Bill Healy
44.126/18 USA:Puerto Rico KP4TR Ramon Gonzalez
#
44.128 is reserved for testing. Do not use for operational networks.
You may safely assume that any packets with 44.128 addresses are bogons
unless you are using them for some sort of testing
#
44.128/16 TEST
#
International subnet coordinators by country
#
44.129/16 Japan JF3LGC Toshiyuki Mabuchi
44.129.192/24 Japan JM1WBB Isao SEKI
44.130/16 Germany DL4TA Ralf D Kloth
44.131/16 United Kingdom G1PLT Paul Taylor
44.132/16 Indonesia YC1DAV Onno W. Purbo
44.133/16 Spain EA4DQX Jose Antonio Garcia
44.134/16 Italy I2KFX
44.135/16 Canada VE3JF Barry McLarnon
44.136/16 Australia VK2ZXQ John Tanner
44.137/16 Netherlands PE1CHL Rob Janssen
44.138/16 Israel 4X1GP Peleg Lapid
44.139/16 Finland OH1MQK Matti Aarnio
44.140/16 Sweden SM0ORB Anders Tornqvist
44.141/16 Norway LA6KJ Sven Astrup
44.142/16 Switzerland HB9CAT Marco Zollinger
44.143/16 Austria OE1KDA Krzysztof Dabrowski
44.144/16 Belgium ON7LE Eric Langhendries
44.145/16 Denmark OZ1BVN Soren B. Jensen
44.146/16 Phillipines DU1UJ Eddie Manolo
44.147/16 New Zealand ZL1UFO David Arnett
44.148/16 Ecuador HC5K Ted Jaramillo
44.149/16 Hong Kong VS6YHJ Thomason FAN
44.150/16 Slovenija S53AD Tomo Stegovec
44.151/16 France F5BQP Pierre-Francois Monet
44.152/16 Venezuela YV5CIV Pedro Jose Colina P.
44.153/16 Argentina (+Paraguay,Bolivia) LU7ABF Pedro Converso
44.154/16 Greece SV1UY Demetre Valaris
44.155/16 Ireland EI9GL Paul Healy
44.156/16 Hungary HA8FN Laszlo Fidrich
44.157/16 Chile CE6EZB Raul Burgos
44.158/16 Portugal CT1CUM Carlos Sousa
44.159/16 Thailand HS1JC Kunchit Charmaraman
44.160/16 South Africa ZS6BLY Wessel du Preez
44.161/16 Luxembourg (none)
44.162/16 Cyprus 5B4TX C. Costis

225

IP Address Coordinators

44.163 Central America Coordinator General YN1TV Theo Vlaar
 Secretariate YN7DS Humberto A. Diaz S.

44.163.16/20 Panama HP2CWB Jose Ng Lee
44.163.32/20 Costa Rica TI2YO Minor Barrantas Fallas
44.163.48/20 Nicaragua YN5JAR Jose Antonio Roman
44.163.64/20 Honduras HR2JAE Jorge A. Escoto (San Pedro Sula)

 HR1BY Wolf Baron (Tegucigalpa)
44.163.80/20 El Salvador YS1TG Mario Giolitti
44.163.96/20 Guatamala TG9CL Carlos Eduardo Estrada
44.163.112/20 Belize V31LO Tony Rath
44.163.128/20 Netherland Antilles PJ2JW Joop Willems

44.164.0/22 Surinam PZ2AC Otto Morroy
44.164.4/22 French Guiana
44.164.8/22 Guyana
44.164.12/22 Mozambique C91BT/PA3CBH Theo Vlaar
44.164.128/22 Trinidad&Tobago 9Y4UWI Dr. Patrick Hosein
44.164.132/22 Falkland Islands VP8CSA Mark
44.164.136/22 Aruba P43T Anthony Thiel

44.165/16 Poland SP5WCA Andrzej K. Brandt
44.166/16 Korea HL1DKK LEE Jong-Jin
44.167/16 India VU2LBW Lakshman ("Lucky") Bijanki
44.168/16 Taiwan BV5AF Bolon
44.169/16 Nigeria 5N0OBA Kunle
44.170/16 Croatia ?? Sinisa Novosel

44.171.16/20 Colombia HK3EGI Daniel E Visbal
44.171.32/20 Peru OA4CZU Rafael H. Mantilla
44.171.48/20 Uruguay CX7AP Dennis Cahill

44.172/16 Sri Lanka 4S7EF Ekendra
44.173/16 Mexico XE2/WP2B Regnerus Dantuma
44.174/16 Brazil PY5JO Joao Fabio de Oliveira

44.175.0/20 Cuba CO2JA Jose Amador
44.175.16/20 Dominican Republic HI8GN Jose Ramon
44.175.32/20 Haiti HH2B Bernard Russo

44.176/16 Turkey TA2T A. Tahir DENGIZ
44.177/16 Czech Republic OK2XDP Michal Dobes
44.178/16 Russia RA3APW Karen Tadewosyan

44.179.0/20 Gibraltar ZB0D Jim Watt
44.179.32/20 Malta/Gozo G0DEO/9H1IA William Batey
44.180/16 Yugoslavia(former) YT7MPB Miroslav Skoric

226 Appendix B

44.181/16 Slowak Republic OM3WKW Branislav Chvila
44.182/16 Romania YO2LGU Norbert Hanigovszki
44.183/16 Iceland TF3BNT Benedikt Sveinsson
44.184/16 Lebanon OD5NZ Ramzi Abdallah
44.185/16 Bulgaria LZ1NY Victor ?
44.186/16 Singapore 9V1ZY Edwin Teh
44.187.0/20 Lithuania LY2IC Vytas Matonis
44.187.16/20 San Marino T77IG Don Pino

44.188.0/20 Armenia ? Edgar Der-Danieliantz
44.188.16/20 Azerbaijan none
44.188.32/20 Belarus none
44.188.48/20 Estonia ES1LAU Anto Veldre
44.188.64/20 Georgia none
44.188.80/20 Kazakhstan none
44.188.96/20 Kyrgyzstan none
44.188.112/20 Latvia YL2PG Gunnars E. Postnieks
44.188.128/20 none none
44.188.144/20 Moldova none
44.188.160/20 Tajikstan none
44.188.176/20 Turkmenistan none
44.188.192/20 Ukraine-Kiev UT2UZ Nick Fedoseev
44.188.208/20 Ukraine-Donetsk UR7IEK Jim Smelyansky
44.188.224/20 Ukraine-Lviv UT1WPR Vic Golutvin
44.188.240/20 Uzbekistan none

44.189.0/20 Bosnia & Herzegovinia T97S Sead Sogoljevic

44.193 Outer Space-AMSAT W3IWI Tom Clark
44.194 Oceana (none yet)
44.195 Antarctica (all treaty zones) KC4AAA Brent Jones

44.196 Arctic (none yet)

44.197 African Continent
44.197.16/20 Ivory Coast ? J.V. Mayega
44.197.64/20 Central (none yet)

44.198 Pacific Islands
44.198.0/22 Guam KH2EI Phil Weber

227

Sample AUTOEXEC.NOS File

Appendix C - Sample AUTOEXEC.NOS

228 Appendix C

229

NET/ROM.NOS

Appendix D - NET/ROM.NOS

230 Appendix D

231

BBS.NOS

Appendix E - BBS.NOS

232 Appendix E

233

The DOMAIN.TXT File

Appendix F - DOMAIN.TXT

234 Appendix F

235

Sample FTPUSERS File

Appendix G - FTPUSERS

236 Appendix G

237

The REWRITE File

Appendix H - REWRITE

238 Appendix H

239

The FORWARD.BBS File

Appendix I - FORWARD.BBS

240 Appendix I

241

A Sample BM.RC File

Appendix J - BM.RC

242 Appendix J

243

Configuring Linux to TNOS

Appendix K - Configuring Linux to TNOS

244 Appendix K

	Contents
	List of Figures
	Foreword
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Appendix A +

